Methylglyoxal Causes Swelling and Activation of a Volume-Sensitive Anion Conductance in Rat Pancreatic β-Cells

Methylglyoxal Causes Swelling and Activation of a Volume-Sensitive Anion Conductance in Rat... Membrane potential and whole-cell current were studied in rat pancreatic β-cells using the `perforated patch' technique and cell volume measured by a video-imaging method. Exposure of β-cells to the α-ketoaldehyde methylglyoxal (1 mm) resulted in depolarization and electrical activity. In cells voltage-clamped at −70 mV, this effect was accompanied by the development of inward current noise. In voltage-pulse experiments, methylglyoxal activated an outwardly rectifying conductance which was virtually identical to the volume-sensitive anion conductance previously described in these cells. Two inhibitors of this conductance, 4,4′-dithiocyanatostilbene-2,2′-disulfonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), also inhibited the depolarization and inward current evoked by methylglyoxal. Methylglyoxal increased β-cell volume to a relative value of 1.33 after 10 min with a gradual return towards basal levels following withdrawal of the α-ketoaldehyde. None of the effects of methylglyoxal was observed in response to t-butylglyoxal which, unlike methylglyoxal, is a poor substrate for the glyoxalase pathway. Methylglyoxal had no apparent effect on β-cell K+ channel activity. It is suggested that the metabolism of methylglyoxal to d-lactate causes β-cell swelling and activation of the volume-sensitive anion channel, leading to depolarization. These findings could be relevant to the stimulatory action of d-glucose, the metabolism of which generates significant quantities of l-lactate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Methylglyoxal Causes Swelling and Activation of a Volume-Sensitive Anion Conductance in Rat Pancreatic β-Cells

Loading next page...
 
/lp/springer_journal/methylglyoxal-causes-swelling-and-activation-of-a-volume-sensitive-Qo6WkbZEzC
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900472
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial