Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements

Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires... Putrescine N-methyltransferase (PMT) catalyzes the first committed step of nicotine biosynthesis, converting putrescine into N-methylputrescine. A variety of chemical, environmental, and developmental cues have been implicated in its regulation. Here we have examined the differential expression of β-glucuronidase (GUS) transgenes under the control of the transcriptional regulatory sequences of four distinct members of the NtPMT gene family from tobacco (Nicotiana tabacum L.). BY-2 cell cultures expressing various NtPMT promoter-GUS constructs were examined for their response to treatment with various combinations of methyl jasmonate (MeJA), auxin (AUX), and ethylene (ETH). All four NtPMT gene promoters examined were inducible by MeJA, although the extent of the induction varied dramatically, with the NtPMT1a promoter being the most responsive. High AUX levels in the cell growth media repressed NtPMT::GUS transgene expression and inhibited their MeJA-induced transcription. Treatment of BY-2 cells with ETH alone did not result in a significant alteration in NtPMT::GUS expression. However, similar to AUX, ETH treatment led to the suppression of MeJA-induced transcription. Detailed deletion analysis of the NtPMT1a gene promoter showed that as little as 111 bp upstream of the transcriptional start site were sufficient to confer MeJA-responsiveness. Deletion of a conserved G-box element (GCACGTTG) at −103 to −96 bp completely abolished MeJA-responsiveness. Further mutagenesis studies revealed that in addition to a functional G-box, MeJA-responsiveness of the NtPMT1a promoter also required a TA-rich region and a GCC-motif (TGCGCCC) located at −80 to −69 bp and −62 to −56 bp relative to the start site, respectively. A synthetic G-box tetramer (4 X syn G-box) fused to a −83 bp fragment from the NtPMT1apromoter (containing the TA-rich region, GCC-box, and TATA-box) displayed a 30-fold induction by MeJA treatment, whereas when the 4 X syn G-box was fused to a minimal (−46 bp) promoter fragment derived from the CaMV 35S gene, no induction by MeJA treatment was detected. Our results indicate that multiple intersecting signal transduction pathways and different transcriptional regulatory factors are involved in mediating JA-responsiveness of NtPMT expression in tobacco. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Methyl jasmonate induced expression of the tobacco putrescine N-methyltransferase genes requires both G-box and GCC-motif elements

Loading next page...
 
/lp/springer_journal/methyl-jasmonate-induced-expression-of-the-tobacco-putrescine-n-oc0X56jC4K
Publisher
Springer Journals
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-1962-8
Publisher site
See Article on Publisher Site

Abstract

Putrescine N-methyltransferase (PMT) catalyzes the first committed step of nicotine biosynthesis, converting putrescine into N-methylputrescine. A variety of chemical, environmental, and developmental cues have been implicated in its regulation. Here we have examined the differential expression of β-glucuronidase (GUS) transgenes under the control of the transcriptional regulatory sequences of four distinct members of the NtPMT gene family from tobacco (Nicotiana tabacum L.). BY-2 cell cultures expressing various NtPMT promoter-GUS constructs were examined for their response to treatment with various combinations of methyl jasmonate (MeJA), auxin (AUX), and ethylene (ETH). All four NtPMT gene promoters examined were inducible by MeJA, although the extent of the induction varied dramatically, with the NtPMT1a promoter being the most responsive. High AUX levels in the cell growth media repressed NtPMT::GUS transgene expression and inhibited their MeJA-induced transcription. Treatment of BY-2 cells with ETH alone did not result in a significant alteration in NtPMT::GUS expression. However, similar to AUX, ETH treatment led to the suppression of MeJA-induced transcription. Detailed deletion analysis of the NtPMT1a gene promoter showed that as little as 111 bp upstream of the transcriptional start site were sufficient to confer MeJA-responsiveness. Deletion of a conserved G-box element (GCACGTTG) at −103 to −96 bp completely abolished MeJA-responsiveness. Further mutagenesis studies revealed that in addition to a functional G-box, MeJA-responsiveness of the NtPMT1a promoter also required a TA-rich region and a GCC-motif (TGCGCCC) located at −80 to −69 bp and −62 to −56 bp relative to the start site, respectively. A synthetic G-box tetramer (4 X syn G-box) fused to a −83 bp fragment from the NtPMT1apromoter (containing the TA-rich region, GCC-box, and TATA-box) displayed a 30-fold induction by MeJA treatment, whereas when the 4 X syn G-box was fused to a minimal (−46 bp) promoter fragment derived from the CaMV 35S gene, no induction by MeJA treatment was detected. Our results indicate that multiple intersecting signal transduction pathways and different transcriptional regulatory factors are involved in mediating JA-responsiveness of NtPMT expression in tobacco.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off