Methods of Reducing the Power Requirements of Ventilation Systems. Part 1. Derivation of Hydrodynamic Equations of Air Ejection by a Stream of Free-Flowing Material in a Perforated Trough with Bypass Chamber

Methods of Reducing the Power Requirements of Ventilation Systems. Part 1. Derivation of... Hydrodynamic equations for the study of air recirculation in a vertical perforated tube situated in a bypass chamber as a stream of free-flowing material and ejected air travels through the chamber are obtained. The case in which recirculation of air ascending in the bypass chamber is realized both through holes in the uniform perforation of the walls of the trough as well as through the end holes at the ends of the bypass chamber is considered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Refractories and Industrial Ceramics Springer Journals

Methods of Reducing the Power Requirements of Ventilation Systems. Part 1. Derivation of Hydrodynamic Equations of Air Ejection by a Stream of Free-Flowing Material in a Perforated Trough with Bypass Chamber

Loading next page...
 
/lp/springer_journal/methods-of-reducing-the-power-requirements-of-ventilation-systems-part-9q0bvBJ7g5
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Material Science; Characterization and Evaluation of Materials; Materials Science, general; Ceramics, Glass, Composites, Natural Methods
ISSN
1083-4877
eISSN
1573-9139
D.O.I.
10.1007/s11148-014-9662-7
Publisher site
See Article on Publisher Site

Abstract

Hydrodynamic equations for the study of air recirculation in a vertical perforated tube situated in a bypass chamber as a stream of free-flowing material and ejected air travels through the chamber are obtained. The case in which recirculation of air ascending in the bypass chamber is realized both through holes in the uniform perforation of the walls of the trough as well as through the end holes at the ends of the bypass chamber is considered.

Journal

Refractories and Industrial CeramicsSpringer Journals

Published: Jun 7, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off