Methods of analysis for georeferenced sample counts of tarnished plant bugs in cotton

Methods of analysis for georeferenced sample counts of tarnished plant bugs in cotton The problem of analyzing georeferenced cotton pest insect samples when a large percentage of the counts are zero is examined. The use of appropriate statistical methods for their analysis is required. To demonstrate this, georeferenced samples (n = 63) of tarnished plant bugs (TPBs; Lygus lineolaris [Palisot de Beauvois] (Heteroptera: Miridae)) were analyzed by three statistical methods and the results were compared. Correlation analysis of the sample counts with 25 classes of cotton growth derived from an unsupervized classification of multispectral imagery was followed by a complete enumeration analysis comprising three scenarios. The first scenario assumed the insect samples were unstratified. A distribution of sample averages was created by complete enumeration of all combinations of samples taken four at a time. The second scenario used imagery of the cotton fields to allocate the samples among three cotton growth categories (marginal, good or best) derived by a supervized classification of the 25 unsupervized classes. The insect samples associated with these categorical habitats were completely enumerated using allocations of 4, 6, 8 or 10 samples at a time from various sample sizes to determine how different allocations affected the results. The mean was not affected, but the standard deviation decreased with increased allocation sizes in all habitats. The third scenario used the two observers and three habitat categories to create six additional complete enumeration distributions by allocating four samples at a time from groups of varying sample sizes. These enumeration distributions are non-parametric estimators of the sampling distribution of: (1) the sample averages of a given sample size when samples are taken from the entire field, (2) the sample averages of a given size when samples are taken from each cotton habitat or (3) the sample averages of a given sample size from samples taken from each habitat by each observer. To support the enumeration analyses, these insect samples were analyzed further by Poisson regression models. These models showed significant differences between TPB counts by the two observers and among the habitats, whereas the observer by habitat interaction was not significant. For every combination of observer and cotton growth category, a Poisson regression model estimated the mean rate of TPB numbers. These means were similar to the corresponding modes of the complete enumeration distributions. The two non-standard methods showed that TPB numbers differed by habitat categories even though there were samples with a zero count, whereas a correlation analysis failed to identify a relationship between TPB sample counts and unsupervized habitat classes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Methods of analysis for georeferenced sample counts of tarnished plant bugs in cotton

Loading next page...
 
/lp/springer_journal/methods-of-analysis-for-georeferenced-sample-counts-of-tarnished-plant-mE2yUPNSg6
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-008-9085-x
Publisher site
See Article on Publisher Site

Abstract

The problem of analyzing georeferenced cotton pest insect samples when a large percentage of the counts are zero is examined. The use of appropriate statistical methods for their analysis is required. To demonstrate this, georeferenced samples (n = 63) of tarnished plant bugs (TPBs; Lygus lineolaris [Palisot de Beauvois] (Heteroptera: Miridae)) were analyzed by three statistical methods and the results were compared. Correlation analysis of the sample counts with 25 classes of cotton growth derived from an unsupervized classification of multispectral imagery was followed by a complete enumeration analysis comprising three scenarios. The first scenario assumed the insect samples were unstratified. A distribution of sample averages was created by complete enumeration of all combinations of samples taken four at a time. The second scenario used imagery of the cotton fields to allocate the samples among three cotton growth categories (marginal, good or best) derived by a supervized classification of the 25 unsupervized classes. The insect samples associated with these categorical habitats were completely enumerated using allocations of 4, 6, 8 or 10 samples at a time from various sample sizes to determine how different allocations affected the results. The mean was not affected, but the standard deviation decreased with increased allocation sizes in all habitats. The third scenario used the two observers and three habitat categories to create six additional complete enumeration distributions by allocating four samples at a time from groups of varying sample sizes. These enumeration distributions are non-parametric estimators of the sampling distribution of: (1) the sample averages of a given sample size when samples are taken from the entire field, (2) the sample averages of a given size when samples are taken from each cotton habitat or (3) the sample averages of a given sample size from samples taken from each habitat by each observer. To support the enumeration analyses, these insect samples were analyzed further by Poisson regression models. These models showed significant differences between TPB counts by the two observers and among the habitats, whereas the observer by habitat interaction was not significant. For every combination of observer and cotton growth category, a Poisson regression model estimated the mean rate of TPB numbers. These means were similar to the corresponding modes of the complete enumeration distributions. The two non-standard methods showed that TPB numbers differed by habitat categories even though there were samples with a zero count, whereas a correlation analysis failed to identify a relationship between TPB sample counts and unsupervized habitat classes.

Journal

Precision AgricultureSpringer Journals

Published: Oct 10, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off