Methods for the Analysis of Explanatory Linear Regression Models with Missing Data Not at Random

Methods for the Analysis of Explanatory Linear Regression Models with Missing Data Not at Random Since the work of Little and Rubin (1987) not substantial advances in the analysisof explanatory regression models for incomplete data with missing not at randomhave been achieved, mainly due to the difficulty of verifying the randomness ofthe unknown data. In practice, the analysis of nonrandom missing data is donewith techniques designed for datasets with random or completely random missingdata, as complete case analysis, mean imputation, regression imputation, maximumlikelihood or multiple imputation. However, the data conditions required to minimizethe bias derived from an incorrect analysis have not been fully determined. In thepresent work, several Monte Carlo simulations have been carried out to establishthe best strategy of analysis for random missing data applicable in datasets withnonrandom missing data. The factors involved in simulations are sample size,percentage of missing data, predictive power of the imputation model and existenceof interaction between predictors. The results show that the smallest bias is obtainedwith maximum likelihood and multiple imputation techniques, although with lowpercentages of missing data, absence of interaction and high predictive power ofthe imputation model (frequent data structures in research on child and adolescentpsychopathology) acceptable results are obtained with the simplest regression imputation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

Methods for the Analysis of Explanatory Linear Regression Models with Missing Data Not at Random

Loading next page...
 
/lp/springer_journal/methods-for-the-analysis-of-explanatory-linear-regression-models-with-pG4lQscYSg
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Social Sciences; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1023/A:1027323122628
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial