Methods for Multilevel Ordinal Data in Prevention Research

Methods for Multilevel Ordinal Data in Prevention Research This paper discusses statistical models for multilevel ordinal data that may be more appropriate for prevention outcomes than models that assume continuous measurement and normality. Prevention outcomes often have distributions that make them inappropriate for many popular statistical models that assume normality and are more appropriately considered ordinal outcomes. Despite this, the modeling of ordinal outcomes is often not well understood. This article discusses ways to analyze multilevel ordinal outcomes that are clustered or longitudinal, including the proportional odds regression model for ordinal outcomes, which assumes that the covariate effects are the same across the levels of the ordinal outcome. The article will cover how to test this assumption and what to do if it is violated. It will also discuss application of these models using computer software programs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Prevention Science Springer Journals

Methods for Multilevel Ordinal Data in Prevention Research

Loading next page...
 
/lp/springer_journal/methods-for-multilevel-ordinal-data-in-prevention-research-4R0lFsu7rF
Publisher
Springer US
Copyright
Copyright © 2014 by Society for Prevention Research
Subject
Medicine & Public Health; Public Health; Health Psychology; Child and School Psychology
ISSN
1389-4986
eISSN
1573-6695
D.O.I.
10.1007/s11121-014-0495-x
Publisher site
See Article on Publisher Site

Abstract

This paper discusses statistical models for multilevel ordinal data that may be more appropriate for prevention outcomes than models that assume continuous measurement and normality. Prevention outcomes often have distributions that make them inappropriate for many popular statistical models that assume normality and are more appropriately considered ordinal outcomes. Despite this, the modeling of ordinal outcomes is often not well understood. This article discusses ways to analyze multilevel ordinal outcomes that are clustered or longitudinal, including the proportional odds regression model for ordinal outcomes, which assumes that the covariate effects are the same across the levels of the ordinal outcome. The article will cover how to test this assumption and what to do if it is violated. It will also discuss application of these models using computer software programs.

Journal

Prevention ScienceSpringer Journals

Published: Jun 18, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off