Methods for finding frequent items in data streams

Methods for finding frequent items in data streams The frequent items problem is to process a stream of items and find all items occurring more than a given fraction of the time. It is one of the most heavily studied problems in data stream mining, dating back to the 1980s. Many applications rely directly or indirectly on finding the frequent items, and implementations are in use in large scale industrial systems. However, there has not been much comparison of the different methods under uniform experimental conditions. It is common to find papers touching on this topic in which important related work is mischaracterized, overlooked, or reinvented. In this paper, we aim to present the most important algorithms for this problem in a common framework. We have created baseline implementations of the algorithms and used these to perform a thorough experimental study of their properties. We give empirical evidence that there is considerable variation in the performance of frequent items algorithms. The best methods can be implemented to find frequent items with high accuracy using only tens of kilobytes of memory, at rates of millions of items per second on cheap modern hardware. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Methods for finding frequent items in data streams

Loading next page...
 
/lp/springer_journal/methods-for-finding-frequent-items-in-data-streams-Vg6yEiBmsF
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-009-0172-z
Publisher site
See Article on Publisher Site

Abstract

The frequent items problem is to process a stream of items and find all items occurring more than a given fraction of the time. It is one of the most heavily studied problems in data stream mining, dating back to the 1980s. Many applications rely directly or indirectly on finding the frequent items, and implementations are in use in large scale industrial systems. However, there has not been much comparison of the different methods under uniform experimental conditions. It is common to find papers touching on this topic in which important related work is mischaracterized, overlooked, or reinvented. In this paper, we aim to present the most important algorithms for this problem in a common framework. We have created baseline implementations of the algorithms and used these to perform a thorough experimental study of their properties. We give empirical evidence that there is considerable variation in the performance of frequent items algorithms. The best methods can be implemented to find frequent items with high accuracy using only tens of kilobytes of memory, at rates of millions of items per second on cheap modern hardware.

Journal

The VLDB JournalSpringer Journals

Published: Feb 1, 2010

References

  • Interpreting the data: parallel analysis with sawzall
    Pike, R.; Dorward, S.; Griesemer, R.; Quinlan, S.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off