Method for Precision Nitrogen Management in Spring Wheat: I Fundamental Relationships

Method for Precision Nitrogen Management in Spring Wheat: I Fundamental Relationships Wheat (Triticum aestivum L.) fields in the semi-arid Northern Great Plains are spatially variable in soil N fertility and crop productivity. Consequently, there is interest in applying variable, rather than uniform rates of fertilizer N across the landscape. Intensive soil sampling as a basis for variable-rate fertilizer management is too costly when compared to the value of wheat in this region. The objective of this research was to determine relationships between yield and protein, and protein and available N as needed to develop a cost-effective variable-rate N fertilizer strategy for spring wheat. A three-year study (1996–1998) was carried out at a site near Havre, Montana, USA (48°30′N, 109°22′W). Treatments consisted of three water regimes, four cultivars, and five fertilizer N levels per water regime in a randomized complete block design with four replicates. Scatter diagrams of relative yield vs. grain protein were consistent with earlier investigators, and indicated protein concentrations at harvest provided a method for indexing N nutrition adequacy (deficiency vs. sufficiency) in wheat. A critical protein concentration of 13.2% was defined using a graphical Cate-Nelson analysis. This value appeared to be consistent across the three water regimes and four cultivars as 159 (88%) of the 180 water×cultivar×N level episodes were in positive quadrants. No correlation could be found between relative yield and protein for episodes below the critical level (r2=0.1). Hence, grain protein concentrations could not be used to predict the magnitude of yield losses from N deficiency. Grain protein content would be useful for prescribing fertilizer recommendations where N deficiency (<13.2% protein) reduces grain yield under semi-arid conditions. Inverse slopes (dy/dx) of the protein-available N curves reveal that it takes 12–18 kg N/ha to change protein 1% (e.g., 12% vs. 13%) where wheat is under water stress during grain fill. The total N requirement could then be computed by summing the N required for raising protein and the N removed by the crop in the year when the grain was harvested. Precision Agriculture Springer Journals

Method for Precision Nitrogen Management in Spring Wheat: I Fundamental Relationships

Loading next page...
Kluwer Academic Publishers
Copyright © 1999 by Kluwer Academic Publishers
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial