Methane emission from living tree wood

Methane emission from living tree wood The time courses of CO2, CH4, and H2 accumulation and O2 absorption at the exposure of trunk wood samples taken from living trees of birch (Betula pendula Roth.), bird cherry tree (Padus avium Mill.), and pine (Pinus sylvestris L.) in the closed volume were studied. The activity of these processes at different temperatures (from 5 to 55°C) was also examined. The main components of gas exchange in all three tree species were O2 absorption and CO2 evolution. The fluxes of these gases were equal. In experiments with dehydration-hydration of wood samples, the intrawood origin of “woody” methane was established. Emission of CH4 and H2 from the wood depended on temperature. The temperature dependence of CH4 emission was similar to the temperature dependence of wood respiration. The high correlation between CO2, CH4, and H2 release and O2 absorption was noted. The relationships between these gas-exchange parameters were not species-specific. Temperature maxima of CH4 emission and the respiratory activity coincided. This implies that the highest methane emission should be expected in the period of the growth season most favorable for tree physiology. For the wood from all tree species, the ratio between released CH4 and CO2 volumes was close to 1: 160. This means that the annual methane emission from living tree is about 2 Mt C, attaining 4% of total methane emission from the territory of North Eurasia. However, taking into account a temperature dependence of methane exchange between the vegetation cover and atmosphere, we can expect that, at global climate warming, methane emission volume might be substantial. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Methane emission from living tree wood

Loading next page...
 
/lp/springer_journal/methane-emission-from-living-tree-wood-F6dQVM68HK
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443711020117
Publisher site
See Article on Publisher Site

Abstract

The time courses of CO2, CH4, and H2 accumulation and O2 absorption at the exposure of trunk wood samples taken from living trees of birch (Betula pendula Roth.), bird cherry tree (Padus avium Mill.), and pine (Pinus sylvestris L.) in the closed volume were studied. The activity of these processes at different temperatures (from 5 to 55°C) was also examined. The main components of gas exchange in all three tree species were O2 absorption and CO2 evolution. The fluxes of these gases were equal. In experiments with dehydration-hydration of wood samples, the intrawood origin of “woody” methane was established. Emission of CH4 and H2 from the wood depended on temperature. The temperature dependence of CH4 emission was similar to the temperature dependence of wood respiration. The high correlation between CO2, CH4, and H2 release and O2 absorption was noted. The relationships between these gas-exchange parameters were not species-specific. Temperature maxima of CH4 emission and the respiratory activity coincided. This implies that the highest methane emission should be expected in the period of the growth season most favorable for tree physiology. For the wood from all tree species, the ratio between released CH4 and CO2 volumes was close to 1: 160. This means that the annual methane emission from living tree is about 2 Mt C, attaining 4% of total methane emission from the territory of North Eurasia. However, taking into account a temperature dependence of methane exchange between the vegetation cover and atmosphere, we can expect that, at global climate warming, methane emission volume might be substantial.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 12, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off