Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle

Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle Patients with metastatic cancer experience a severe loss of skeletal muscle mass and function known as cachexia. Cachexia is associated with poor prognosis and accelerated death in patients with cancer, yet its underlying mechanisms remain poorly understood. Here, we identify the metal-ion transporter ZRT- and IRT-like protein 14 (ZIP14) as a critical mediator of cancer-induced cachexia. ZIP14 is upregulated in cachectic muscles of mice and in patients with metastatic cancer and can be induced by TNF-α and TGF-β cytokines. Strikingly, germline ablation or muscle-specific depletion of Zip14 markedly reduces muscle atrophy in metastatic cancer models. We find that ZIP14-mediated zinc uptake in muscle progenitor cells represses the expression of MyoD and Mef2c and blocks muscle-cell differentiation. Importantly, ZIP14-mediated zinc accumulation in differentiated muscle cells induces myosin heavy chain loss. These results highlight a previously unrecognized role for altered zinc homeostasis in metastatic cancer–induced muscle wasting and implicate ZIP14 as a therapeutic target for its treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Medicine Springer Journals

Loading next page...
 
/lp/springer_journal/metastatic-cancers-promote-cachexia-through-zip14-upregulation-in-gyBc58vdOo

References (84)

Publisher
Springer Journals
Copyright
Copyright © 2018 by The Author(s)
Subject
Biomedicine; Biomedicine, general; Cancer Research; Metabolic Diseases; Infectious Diseases; Molecular Medicine; Neurosciences
ISSN
1078-8956
eISSN
1546-170X
DOI
10.1038/s41591-018-0054-2
Publisher site
See Article on Publisher Site

Abstract

Patients with metastatic cancer experience a severe loss of skeletal muscle mass and function known as cachexia. Cachexia is associated with poor prognosis and accelerated death in patients with cancer, yet its underlying mechanisms remain poorly understood. Here, we identify the metal-ion transporter ZRT- and IRT-like protein 14 (ZIP14) as a critical mediator of cancer-induced cachexia. ZIP14 is upregulated in cachectic muscles of mice and in patients with metastatic cancer and can be induced by TNF-α and TGF-β cytokines. Strikingly, germline ablation or muscle-specific depletion of Zip14 markedly reduces muscle atrophy in metastatic cancer models. We find that ZIP14-mediated zinc uptake in muscle progenitor cells represses the expression of MyoD and Mef2c and blocks muscle-cell differentiation. Importantly, ZIP14-mediated zinc accumulation in differentiated muscle cells induces myosin heavy chain loss. These results highlight a previously unrecognized role for altered zinc homeostasis in metastatic cancer–induced muscle wasting and implicate ZIP14 as a therapeutic target for its treatment.

Journal

Nature MedicineSpringer Journals

Published: Jun 6, 2018

There are no references for this article.