Metallophilic fungi research: an alternative for its use in the bioremediation of hexavalent chromium

Metallophilic fungi research: an alternative for its use in the bioremediation of hexavalent... Contamination by hexavalent chromium has had a large impact on modern society and human health. This problem is a consequence of its great industrial applicability to several products and processes. Short-term exposure to hexavalent chromium can cause irritation, ulceration in skin and stomach and in addition to cancer, dermatitis, and damage to liver, renal circulation and nervous tissues, with even death being observed in response to long-term exposures. Many techniques have been used for the remediation of this pollutant, including physical and chemical approaches and, in more recent years, biological methods. Filamentous fungi isolated from contaminated sites exhibit a significant tolerance to heavy metal; hence, they are an important source of microbiota capable of eliminating hexavalent chromium from the environment. However, these microorganisms can do so in different ways, including biosorption, bioreduction, and bioaccumulation, among others. In this review, we explore several of the most documented mechanisms that have been described for fungi/hexavalent chromium interactions and their potential use in bioremediation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Environmental Science and Technology Springer Journals

Metallophilic fungi research: an alternative for its use in the bioremediation of hexavalent chromium

Loading next page...
 
/lp/springer_journal/metallophilic-fungi-research-an-alternative-for-its-use-in-the-wYdUa3VSJu
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Environment; Environment, general; Environmental Science and Engineering; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Soil Science & Conservation; Ecotoxicology
ISSN
1735-1472
eISSN
1735-2630
D.O.I.
10.1007/s13762-017-1348-5
Publisher site
See Article on Publisher Site

Abstract

Contamination by hexavalent chromium has had a large impact on modern society and human health. This problem is a consequence of its great industrial applicability to several products and processes. Short-term exposure to hexavalent chromium can cause irritation, ulceration in skin and stomach and in addition to cancer, dermatitis, and damage to liver, renal circulation and nervous tissues, with even death being observed in response to long-term exposures. Many techniques have been used for the remediation of this pollutant, including physical and chemical approaches and, in more recent years, biological methods. Filamentous fungi isolated from contaminated sites exhibit a significant tolerance to heavy metal; hence, they are an important source of microbiota capable of eliminating hexavalent chromium from the environment. However, these microorganisms can do so in different ways, including biosorption, bioreduction, and bioaccumulation, among others. In this review, we explore several of the most documented mechanisms that have been described for fungi/hexavalent chromium interactions and their potential use in bioremediation.

Journal

International Journal of Environmental Science and TechnologySpringer Journals

Published: May 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off