Metal pollution across the upper delta plain wetlands and its adjacent shallow sea wetland, northeast of China: implications for the filtration functions of wetlands

Metal pollution across the upper delta plain wetlands and its adjacent shallow sea wetland,... Grain size and concentrations of organic carbon (Corg) and particulate metals (PMs) As, Cd, Cr, Cu, Hg, Pb, Zn, Al, Fe, and Mn of 373 surface sediment samples, salinities in 67 surface water samples, were analyzed in various environments, including the upper delta plain wetlands (UDPW), its adjacent shallow sea wetland (SSW) in the Liaodong Bay, and river channels that are running through the Liaohe Delta, to evaluate the spatial distribution, transportation environmental dynamics of metals, and the provenance of metal pollution and assess the filtration functions of wetlands. The concentrations of PMs for UDPW were generally higher by a factor of ~ 10–22% compared with its analogues in SSW, suggesting the accumulation of PMs within the UDPW indicates that the UDPW systems are efficiently physical and chemical traps for PMs of anthropogenic sources by retaining and storing pollutants flowing into the sea. However, there was sever sewage irrigation-induced Cd pollution with a geo-accumulation index of 0.62–3.11 in an area of ~ 86 km2 of the adjacent shallow sea wetland, where large amount wetlands were historically moved for agriculture in the UDPW. Remarkably, the distributions of PMs were controlled by salinity-induced desorption and re-adsorption mechanisms and significantly dispersed the contamination coverage by the three-dimensional hydrodynamic and sedimentation processes that dominated by inputs of freshwater and ocean dynamics including NE-SW tidal currents and NE-E longshore drifts in the SSW of the Liaodong Bay. A high agreement between the UDPW and the SSW datasets in principal component analysis essentially reflects that the characteristics of PM sources in the SSW were actually inherited from that in the UDPW, with a much closer relationship among metals, organic matter, and fine particulates in SSW than that of UDPW, which was judged by their correlation coefficient range of 0.406–0.919 in SSW against those of 0.042–0.654 in UDPW. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Metal pollution across the upper delta plain wetlands and its adjacent shallow sea wetland, northeast of China: implications for the filtration functions of wetlands

Loading next page...
 
/lp/springer_journal/metal-pollution-across-the-upper-delta-plain-wetlands-and-its-adjacent-dRsljjByJW
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0912-3
Publisher site
See Article on Publisher Site

Abstract

Grain size and concentrations of organic carbon (Corg) and particulate metals (PMs) As, Cd, Cr, Cu, Hg, Pb, Zn, Al, Fe, and Mn of 373 surface sediment samples, salinities in 67 surface water samples, were analyzed in various environments, including the upper delta plain wetlands (UDPW), its adjacent shallow sea wetland (SSW) in the Liaodong Bay, and river channels that are running through the Liaohe Delta, to evaluate the spatial distribution, transportation environmental dynamics of metals, and the provenance of metal pollution and assess the filtration functions of wetlands. The concentrations of PMs for UDPW were generally higher by a factor of ~ 10–22% compared with its analogues in SSW, suggesting the accumulation of PMs within the UDPW indicates that the UDPW systems are efficiently physical and chemical traps for PMs of anthropogenic sources by retaining and storing pollutants flowing into the sea. However, there was sever sewage irrigation-induced Cd pollution with a geo-accumulation index of 0.62–3.11 in an area of ~ 86 km2 of the adjacent shallow sea wetland, where large amount wetlands were historically moved for agriculture in the UDPW. Remarkably, the distributions of PMs were controlled by salinity-induced desorption and re-adsorption mechanisms and significantly dispersed the contamination coverage by the three-dimensional hydrodynamic and sedimentation processes that dominated by inputs of freshwater and ocean dynamics including NE-SW tidal currents and NE-E longshore drifts in the SSW of the Liaodong Bay. A high agreement between the UDPW and the SSW datasets in principal component analysis essentially reflects that the characteristics of PM sources in the SSW were actually inherited from that in the UDPW, with a much closer relationship among metals, organic matter, and fine particulates in SSW than that of UDPW, which was judged by their correlation coefficient range of 0.406–0.919 in SSW against those of 0.042–0.654 in UDPW.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off