Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Metagenomics of microbial and viral life in terrestrial geothermal environments

Metagenomics of microbial and viral life in terrestrial geothermal environments Geothermally heated regions of Earth, such as terrestrial volcanic areas (fumaroles, hot springs, and geysers) and deep-sea hydrothermal vents, represent a variety of different environments populated by extremophilic archaeal and bacterial microorganisms. Since most of these microbes thriving in such harsh biotopes, they are often recalcitrant to cultivation; therefore, ecological, physiological and phylogenetic studies of these microbial populations have been hampered for a long time. More recently, culture-independent methodologies coupled with the fast development of next generation sequencing technologies as well as with the continuous advances in computational biology, have allowed the production of large amounts of metagenomic data. Specifically, these approaches have assessed the phylogenetic composition and functional potential of microbial consortia thriving within these habitats, shedding light on how extreme physico-chemical conditions and biological interactions have shaped such microbial communities. Metagenomics allowed to better understand that the exposure to an extreme range of selective pressures in such severe environments, accounts for genomic flexibility and metabolic versatility of microbial and viral communities, and makes extreme- and hyper-thermophiles suitable for bioprospecting purposes, representing an interesting source for novel thermostable proteins that can be potentially used in several industrial processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Environmental Science and Bio/Technology Springer Journals

Metagenomics of microbial and viral life in terrestrial geothermal environments

Loading next page...
1
 
/lp/springer_journal/metagenomics-of-microbial-and-viral-life-in-terrestrial-geothermal-N13YH3UVRZ

References (182)

Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Environment; Environmental Engineering/Biotechnology; Microbiology; Atmospheric Protection/Air Quality Control/Air Pollution
ISSN
1569-1705
eISSN
1572-9826
DOI
10.1007/s11157-017-9435-0
Publisher site
See Article on Publisher Site

Abstract

Geothermally heated regions of Earth, such as terrestrial volcanic areas (fumaroles, hot springs, and geysers) and deep-sea hydrothermal vents, represent a variety of different environments populated by extremophilic archaeal and bacterial microorganisms. Since most of these microbes thriving in such harsh biotopes, they are often recalcitrant to cultivation; therefore, ecological, physiological and phylogenetic studies of these microbial populations have been hampered for a long time. More recently, culture-independent methodologies coupled with the fast development of next generation sequencing technologies as well as with the continuous advances in computational biology, have allowed the production of large amounts of metagenomic data. Specifically, these approaches have assessed the phylogenetic composition and functional potential of microbial consortia thriving within these habitats, shedding light on how extreme physico-chemical conditions and biological interactions have shaped such microbial communities. Metagenomics allowed to better understand that the exposure to an extreme range of selective pressures in such severe environments, accounts for genomic flexibility and metabolic versatility of microbial and viral communities, and makes extreme- and hyper-thermophiles suitable for bioprospecting purposes, representing an interesting source for novel thermostable proteins that can be potentially used in several industrial processes.

Journal

Reviews in Environmental Science and Bio/TechnologySpringer Journals

Published: Jun 5, 2017

There are no references for this article.