Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes

Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac... As a primary characteristic of substantial equivalence, the evaluation of unintended effects of genetically modified plants has been evolving into an important field of research. In this study, a metabolic profiling method for rice seeds was developed using rapid resolution liquid chromatography/quadrupole time-of-flight mass spectrometry. The analytical properties of the method, including the linearity, reproducibility, intra-day precision and inter-day precision, were investigated and were found to be satisfactory. The method was then applied to investigate the differences between transgenic rice and its native counterparts, in addition to the differences found between native rice with different sowing dates or locations. Global metabolic phenotype differences were visualized, and metabolites from different discriminated groups were discovered using multivariate data analysis. The results indicated that environmental factors played a greater role than gene modification for most metabolites, including tryptophan, 9,10,13-trihydroxyoctadec-11-enoic acid, and lysophosphatidylethanolamine 16:0. The concentrations of phytosphingosine, palmitic acid, 5-hydroxy-2-octadenoic acid and three other unidentified metabolites varied slightly due to gene modification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes

Loading next page...
 
/lp/springer_journal/metabolic-profiling-based-on-lc-ms-to-evaluate-unintended-effects-of-z2gtLRXzeT
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Plant Sciences; Biochemistry, general
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-012-9876-3
Publisher site
See Article on Publisher Site

Abstract

As a primary characteristic of substantial equivalence, the evaluation of unintended effects of genetically modified plants has been evolving into an important field of research. In this study, a metabolic profiling method for rice seeds was developed using rapid resolution liquid chromatography/quadrupole time-of-flight mass spectrometry. The analytical properties of the method, including the linearity, reproducibility, intra-day precision and inter-day precision, were investigated and were found to be satisfactory. The method was then applied to investigate the differences between transgenic rice and its native counterparts, in addition to the differences found between native rice with different sowing dates or locations. Global metabolic phenotype differences were visualized, and metabolites from different discriminated groups were discovered using multivariate data analysis. The results indicated that environmental factors played a greater role than gene modification for most metabolites, including tryptophan, 9,10,13-trihydroxyoctadec-11-enoic acid, and lysophosphatidylethanolamine 16:0. The concentrations of phytosphingosine, palmitic acid, 5-hydroxy-2-octadenoic acid and three other unidentified metabolites varied slightly due to gene modification.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 22, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off