Metabolic and functional distinction of the Smicronyx sp. galls on Cuscuta campestris

Metabolic and functional distinction of the Smicronyx sp. galls on Cuscuta campestris Main conclusion The weevil gall contains two distinct regions, differing in hydrolytic and antioxidant enzymes activ - ity and profiles, which is also functionally distinct from the non-infected Cuscuta stems. Weevils of the genus Smicronyx are gall-forming insects, widely distributed on parasitic flowering plants of the genus Cus- cuta. Thus, they are considered epiparasites and potential method for biological control of their agriculturally harmful hosts. Although several reports on gall formation in Cuscuta spp. exist, the metabolic and functional changes, occurring in the gall, remained largely unknown. Smicronyx sp. galls, collected from a wild Cuscuta campestris population, were dissected into two distinct regions, inner and outer cortex, den fi ed by the higher chlorophyll content of the inner cortex. Based on hydrolytic and antioxidant enzymes activity and isoenzymatic profiles as analyzed after electrophoretic separation, we suggested that the gall differs in its metabolic activity from the non-infected plant tissue. While the outer cortex serves as a region of nutrient storage and mobilization, the inner cortex is directly involved in larvae nutrition. The increase in metabolic activity resulted in significantly increased superoxide dismutase activity in the gall, while several other antioxidant enzymes diminished. The present research offers new insights into http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Planta Springer Journals

Metabolic and functional distinction of the Smicronyx sp. galls on Cuscuta campestris

Loading next page...
 
/lp/springer_journal/metabolic-and-functional-distinction-of-the-smicronyx-sp-galls-on-bHeLwXJL5D
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Plant Sciences; Agriculture; Ecology; Forestry
ISSN
0032-0935
eISSN
1432-2048
D.O.I.
10.1007/s00425-018-2926-6
Publisher site
See Article on Publisher Site

Abstract

Main conclusion The weevil gall contains two distinct regions, differing in hydrolytic and antioxidant enzymes activ - ity and profiles, which is also functionally distinct from the non-infected Cuscuta stems. Weevils of the genus Smicronyx are gall-forming insects, widely distributed on parasitic flowering plants of the genus Cus- cuta. Thus, they are considered epiparasites and potential method for biological control of their agriculturally harmful hosts. Although several reports on gall formation in Cuscuta spp. exist, the metabolic and functional changes, occurring in the gall, remained largely unknown. Smicronyx sp. galls, collected from a wild Cuscuta campestris population, were dissected into two distinct regions, inner and outer cortex, den fi ed by the higher chlorophyll content of the inner cortex. Based on hydrolytic and antioxidant enzymes activity and isoenzymatic profiles as analyzed after electrophoretic separation, we suggested that the gall differs in its metabolic activity from the non-infected plant tissue. While the outer cortex serves as a region of nutrient storage and mobilization, the inner cortex is directly involved in larvae nutrition. The increase in metabolic activity resulted in significantly increased superoxide dismutase activity in the gall, while several other antioxidant enzymes diminished. The present research offers new insights into

Journal

PlantaSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off