Mesostructure and activity of photosynthetic apparatus for three crassulacean species grown in cold climate

Mesostructure and activity of photosynthetic apparatus for three crassulacean species grown in... A comparative study of leaf anatomy and morphology and of CO2 exchange was conducted with Rhodiola rosea L., Hylotelephium triphyllum (Haw.) Holub., and Sedum acre L. as representative Crassulacean species occurring in the northeast European Russia. The leaf mesophyll in R. rosea was clearly differentiated into the palisade and spongy tissues, whereas the mesophyll of stonecrops (H. triphyllum and S. acre) was composed of round-shaped cells. The leaves of S. acre featured the largest volume of mesophyll cells and possessed water-retaining cells located around conducting bundles. The chloroplast volume in S. acre (50 μm3) was three times smaller and the number of chloroplasts per cell (170 cell−1) was three times higher than in R. rosea and H. triphyllum (50–55 cell−1). The content of chlorophylls (5–7 mg/g dry wt) and carotenoids (1.5–2.0 mg/g dry wt) in R. rosea leaves was 2–3 times higher than in leaves of stonecrops. The rate of CO2 net uptake in Crassulacean species depended on mesostructure and correlated with the content of pigments and soluble carbohydrates. The photosynthetic rate in R. rosea under optimal irradiance and temperature attained the value of 40 mg/(g dry wt), which is 3 and 8 times higher than in H. triphyllum and S. acre, respectively. The temperature optimum for photosynthesis of R. rosea was observed at 8–18°C, while the optimum for stonecrops was shifted towards higher temperatures by 3–5°C. At chilling temperatures (5–7°C), the leaves of R. rosea retained 50% of their maximal photosynthetic rate, while photosynthetic rates in H. triphyllum and S. acre leaves lowered to 25–30% of the maximal rate. The increase in temperature to 25–30°C led to depression of CO2 net uptake in leaves of Crassulacean species. In R. rosea and H. triphyllum, the rate of photosynthetic electron flow was depressed at high irradiances and temperatures that were supraoptimal for net photosynthesis. It is concluded that the photosynthetic apparatus of Crassulacean species is well adapted to moderate and chilling temperatures, which adjusts the plant metabolism to “life strategies” under conditions of cold climate. Russian Journal of Plant Physiology Springer Journals

Mesostructure and activity of photosynthetic apparatus for three crassulacean species grown in cold climate

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2008 by MAIK Nauka
Life Sciences; Plant Sciences ; Plant Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial