Mesoporous graphitic carbon nitride materials: synthesis and modifications

Mesoporous graphitic carbon nitride materials: synthesis and modifications Graphitic carbon nitride (g-C3N4), as a kind of polymeric semiconductor that has unique electronic structure and excellent chemical stability, has attracted increasing attention of researchers. Moreover, the raw materials for the preparation of g-C3N4 are various and easily accessible. All of these have provided favorable advantages for the fast development of g-C3N4. Compared to bulk g-C3N4, mesoporous g-C3N4 has more prominent natures, such as high specific surface area, large pore volume, and the increased amount of surface active sites. Therefore, great efforts have been devoted to develop mesoporous g-C3N4 (MCN). Up to now, many methods have been explored for the synthesis of MCN, such as hard-template method, soft-template method, template-free method, sol–gel method, and so on. Among these methods, the hard template method is used most widely. In this paper, the recent research on the synthesis of MCN was reviewed. In addition, the modifications to the obtained MCN, which lead to performance enhancement of the MCN for better applications, were also summarized. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Mesoporous graphitic carbon nitride materials: synthesis and modifications

Loading next page...
 
/lp/springer_journal/mesoporous-graphitic-carbon-nitride-materials-synthesis-and-v8s0BPti0E
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2294-9
Publisher site
See Article on Publisher Site

Abstract

Graphitic carbon nitride (g-C3N4), as a kind of polymeric semiconductor that has unique electronic structure and excellent chemical stability, has attracted increasing attention of researchers. Moreover, the raw materials for the preparation of g-C3N4 are various and easily accessible. All of these have provided favorable advantages for the fast development of g-C3N4. Compared to bulk g-C3N4, mesoporous g-C3N4 has more prominent natures, such as high specific surface area, large pore volume, and the increased amount of surface active sites. Therefore, great efforts have been devoted to develop mesoporous g-C3N4 (MCN). Up to now, many methods have been explored for the synthesis of MCN, such as hard-template method, soft-template method, template-free method, sol–gel method, and so on. Among these methods, the hard template method is used most widely. In this paper, the recent research on the synthesis of MCN was reviewed. In addition, the modifications to the obtained MCN, which lead to performance enhancement of the MCN for better applications, were also summarized.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 12, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off