Meshless meso-modeling of masonry in the computational homogenization framework

Meshless meso-modeling of masonry in the computational homogenization framework In the present study a multi-scale computational strategy for the analysis of structures made-up of masonry material is presented. The structural macroscopic behavior is obtained making use of the Computational Homogenization (CH) technique based on the solution of the Boundary Value Problem (BVP) of a detailed Unit Cell (UC) chosen at the mesoscale and representative of the heterogeneous material. The attention is focused on those materials that can be regarded as an assembly of units interfaced by adhesive/cohesive joints. Therefore, the smallest UC is composed by the aggregate and the surrounding joints, the former assumed to behave elastically while the latter show an elastoplastic softening response. The governing equations at the macroscopic level are formulated in the framework of Finite Element Method (FEM) while the Meshless Method (MM) is adopted to solve the BVP at the mesoscopic level. The material tangent stiffness matrix is evaluated at both the mesoscale and macroscale levels for any quadrature point. Macroscopic localization of plastic bands is obtained performing a spectral analysis of the tangent stiffness matrix. Localized plastic bands are embedded into the quadrature points area of the macroscopic finite elements. In order to validate the proposed CH strategy, numerical examples relative to running bond masonry specimens are developed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Meccanica Springer Journals

Meshless meso-modeling of masonry in the computational homogenization framework

Loading next page...
 
/lp/springer_journal/meshless-meso-modeling-of-masonry-in-the-computational-homogenization-L7cmkxhXkJ
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Physics; Classical Mechanics; Civil Engineering; Automotive Engineering; Mechanical Engineering
ISSN
0025-6455
eISSN
1572-9648
D.O.I.
10.1007/s11012-017-0664-7
Publisher site
See Article on Publisher Site

Abstract

In the present study a multi-scale computational strategy for the analysis of structures made-up of masonry material is presented. The structural macroscopic behavior is obtained making use of the Computational Homogenization (CH) technique based on the solution of the Boundary Value Problem (BVP) of a detailed Unit Cell (UC) chosen at the mesoscale and representative of the heterogeneous material. The attention is focused on those materials that can be regarded as an assembly of units interfaced by adhesive/cohesive joints. Therefore, the smallest UC is composed by the aggregate and the surrounding joints, the former assumed to behave elastically while the latter show an elastoplastic softening response. The governing equations at the macroscopic level are formulated in the framework of Finite Element Method (FEM) while the Meshless Method (MM) is adopted to solve the BVP at the mesoscopic level. The material tangent stiffness matrix is evaluated at both the mesoscale and macroscale levels for any quadrature point. Macroscopic localization of plastic bands is obtained performing a spectral analysis of the tangent stiffness matrix. Localized plastic bands are embedded into the quadrature points area of the macroscopic finite elements. In order to validate the proposed CH strategy, numerical examples relative to running bond masonry specimens are developed.

Journal

MeccanicaSpringer Journals

Published: Apr 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off