Meshfree flat-shell formulation for evaluating linear buckling loads and mode shapes of structural plates

Meshfree flat-shell formulation for evaluating linear buckling loads and mode shapes of... We concentrate our attention on developing a meshfree flat-shell formulation for evaluating linear buckling loads and mode shapes (modes) of structural plates employing an eigen value analysis. A Galerkin-based shear deformable flat-shell formulation for that purpose is proposed. The in-plane and out-of-plane deformations are interpolated using the reproducing kernel particle method (RKPM), while the two membrane deformations, and the three deflection and rotational components are, respectively, approximated through a plane stress condition and Mindlin–Reissner plate theory. The meshfree discretization by which, as a consequence, constructs five degrees of freedom per node. A generalized eigenvalue problem for the solution of buckling loads and modes of the structural plates is then described. The stiffness matrices of the linear buckling analysis are numerically integrated based on the stabilized conforming nodal integration (SCNI) and sub-domain stabilized conforming integration (SSCI). The RKPM and SCNI/SSCI based on Galerkin meshfree formulation, i.e., stabilized meshfree Galerkin method, can overcome the shear locking problem by imposing the Kirchhoff mode reproducing condition. In addition, a singular kernel (SK) function is included in the meshfree interpolation functions to accurately impose the essential boundary conditions. The merits of the developed formulation are demonstrated through numerical buckling experiments of several examples of plates, by which the accuracy and performance of the proposed method are investigated and discussed in detail. It indicates from our numerical results of buckling loads and modes that the proposed meshfree formulation is accurate and useful in the simulation of buckling problems of structural stiffened plates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Marine Science and Technology Springer Journals

Meshfree flat-shell formulation for evaluating linear buckling loads and mode shapes of structural plates

Loading next page...
 
/lp/springer_journal/meshfree-flat-shell-formulation-for-evaluating-linear-buckling-loads-AVF4X0b9th
Publisher
Springer Japan
Copyright
Copyright © 2017 by JASNAOE
Subject
Engineering; Automotive Engineering; Engineering Fluid Dynamics; Engineering Design; Offshore Engineering; Mechanical Engineering
ISSN
0948-4280
eISSN
1437-8213
D.O.I.
10.1007/s00773-017-0433-2
Publisher site
See Article on Publisher Site

Abstract

We concentrate our attention on developing a meshfree flat-shell formulation for evaluating linear buckling loads and mode shapes (modes) of structural plates employing an eigen value analysis. A Galerkin-based shear deformable flat-shell formulation for that purpose is proposed. The in-plane and out-of-plane deformations are interpolated using the reproducing kernel particle method (RKPM), while the two membrane deformations, and the three deflection and rotational components are, respectively, approximated through a plane stress condition and Mindlin–Reissner plate theory. The meshfree discretization by which, as a consequence, constructs five degrees of freedom per node. A generalized eigenvalue problem for the solution of buckling loads and modes of the structural plates is then described. The stiffness matrices of the linear buckling analysis are numerically integrated based on the stabilized conforming nodal integration (SCNI) and sub-domain stabilized conforming integration (SSCI). The RKPM and SCNI/SSCI based on Galerkin meshfree formulation, i.e., stabilized meshfree Galerkin method, can overcome the shear locking problem by imposing the Kirchhoff mode reproducing condition. In addition, a singular kernel (SK) function is included in the meshfree interpolation functions to accurately impose the essential boundary conditions. The merits of the developed formulation are demonstrated through numerical buckling experiments of several examples of plates, by which the accuracy and performance of the proposed method are investigated and discussed in detail. It indicates from our numerical results of buckling loads and modes that the proposed meshfree formulation is accurate and useful in the simulation of buckling problems of structural stiffened plates.

Journal

Journal of Marine Science and TechnologySpringer Journals

Published: Mar 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off