Membrane Transporters and Cytoplasmatic pH Regulation on Bovine Sertoli Cells

Membrane Transporters and Cytoplasmatic pH Regulation on Bovine Sertoli Cells Sertoli cells are responsible for regulating a wide range of processes that lead to the differentiation of male germ cells into spermatozoa. Cytoplasmic pH (pH i ) has been shown to be an important parameter in cell physiology, regulating namely cell metabolism and differentiation. However, membrane transport mechanisms involved in pH i regulation mechanisms of Sertoli cells have not yet been elucidated. In this work, pH i was determined using the pH-sensitive fluorescent probe 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Addition of weak acids resulted in rapid acidification of the intracellular milieu. Sertoli cells then recovered pH i by a mechanism that was shown to be sensitive to external Na+. pH i recovery was also greatly reduced in the presence of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and amiloride. These results point toward the action of an Na+-driven HCO 3 − /Cl− exchanger and/or an Na+/HCO 3 − cotransporter and the action of the Na+/H+ exchanger on pH i regulation in the experimental conditions used. pH i recovery was only slightly affected by ouabain, suggesting that the inhibition of Na+/K+-ATPase affects recovery indirectly, possibly via the shift on the Na+ gradient. On the other hand, recovery from the acid load was independent of the presence of concanamycin A, a specific inhibitor of the V-type ATPases, suggesting that these pumps do not have a relevant action on pH i regulation in bovine Sertoli cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Membrane Transporters and Cytoplasmatic pH Regulation on Bovine Sertoli Cells

Loading next page...
 
/lp/springer_journal/membrane-transporters-and-cytoplasmatic-ph-regulation-on-bovine-KJxDdU9MSH
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-008-9139-z
Publisher site
See Article on Publisher Site

Abstract

Sertoli cells are responsible for regulating a wide range of processes that lead to the differentiation of male germ cells into spermatozoa. Cytoplasmic pH (pH i ) has been shown to be an important parameter in cell physiology, regulating namely cell metabolism and differentiation. However, membrane transport mechanisms involved in pH i regulation mechanisms of Sertoli cells have not yet been elucidated. In this work, pH i was determined using the pH-sensitive fluorescent probe 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Addition of weak acids resulted in rapid acidification of the intracellular milieu. Sertoli cells then recovered pH i by a mechanism that was shown to be sensitive to external Na+. pH i recovery was also greatly reduced in the presence of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and amiloride. These results point toward the action of an Na+-driven HCO 3 − /Cl− exchanger and/or an Na+/HCO 3 − cotransporter and the action of the Na+/H+ exchanger on pH i regulation in the experimental conditions used. pH i recovery was only slightly affected by ouabain, suggesting that the inhibition of Na+/K+-ATPase affects recovery indirectly, possibly via the shift on the Na+ gradient. On the other hand, recovery from the acid load was independent of the presence of concanamycin A, a specific inhibitor of the V-type ATPases, suggesting that these pumps do not have a relevant action on pH i regulation in bovine Sertoli cells.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Dec 3, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off