Membrane Tension Modulates the Effects of Apical Cholesterol on the Renal Epithelial Sodium Channel

Membrane Tension Modulates the Effects of Apical Cholesterol on the Renal Epithelial Sodium Channel We used patch-clamp techniques and A6 distal nephron cells as a model to determine how cholesterol regulates the renal epithelial sodium channel (ENaC). We found that luminal methyl-β-cyclodextrin (mβCD, a cholesterol scavenger) did not acutely affect ENaC activity at a previously used concentration of 10 mm but significantly decreased ENaC activity both when the cell membrane was stretched and at a higher concentration of 50 mm. Luminal cholesterol had no effect on ENaC activity at a concentration of 50 μg/ml but significantly increased ENaC activity both when the cell membrane was stretched and at a higher concentration of 200 μg/ml. Confocal microscopy data indicate that membrane tension facilitates both mβCD extraction of cholesterol and A6 cell uptake of exogenous cholesterol. Together with previous findings that cholesterol in the apical membrane is tightly packed with sphingolipids and that stretch can affect lipid distribution, our data suggest that membrane tension modulates the effects of mβCD and cholesterol on ENaC activity, probably by facilitating both extraction and enrichment of apical cholesterol. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Membrane Tension Modulates the Effects of Apical Cholesterol on the Renal Epithelial Sodium Channel

Loading next page...
 
/lp/springer_journal/membrane-tension-modulates-the-effects-of-apical-cholesterol-on-the-rG9H0666eb
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-007-9071-7
Publisher site
See Article on Publisher Site

Abstract

We used patch-clamp techniques and A6 distal nephron cells as a model to determine how cholesterol regulates the renal epithelial sodium channel (ENaC). We found that luminal methyl-β-cyclodextrin (mβCD, a cholesterol scavenger) did not acutely affect ENaC activity at a previously used concentration of 10 mm but significantly decreased ENaC activity both when the cell membrane was stretched and at a higher concentration of 50 mm. Luminal cholesterol had no effect on ENaC activity at a concentration of 50 μg/ml but significantly increased ENaC activity both when the cell membrane was stretched and at a higher concentration of 200 μg/ml. Confocal microscopy data indicate that membrane tension facilitates both mβCD extraction of cholesterol and A6 cell uptake of exogenous cholesterol. Together with previous findings that cholesterol in the apical membrane is tightly packed with sphingolipids and that stretch can affect lipid distribution, our data suggest that membrane tension modulates the effects of mβCD and cholesterol on ENaC activity, probably by facilitating both extraction and enrichment of apical cholesterol.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Oct 19, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off