Membrane Potential Mediates H+-ATPase Dependence of ``Degradative Pathway'' Endosomal Fusion

Membrane Potential Mediates H+-ATPase Dependence of ``Degradative Pathway'' Endosomal Fusion In some epithelial cell lines, the uptake and degradation of proteins is so pronounced as to be regarded as a specialized function known as ``degradative endocytosis.'' The endosomal pathways of the renal proximal tubule and the visceral yolk sac share highly specialized structures for ``degradative endocytosis.'' These endosomal pathways also have a unique distribution of their H+-ATPase, predominantly in the subapical endosomal pathway. Previous studies provide only indirect evidence that H+-ATPases participate in endosomal fusion events: formation of vesicular intermediates between early and late endosomes is H+-ATPase dependent in baby hamster kidney cells, and H+-ATPase subunits bind fusion complex proteins in detergent extracts of fresh rat brain. To determine directly whether homotypic endosomal fusion is H+-ATPase dependent, we inhibited v-type H+-ATPase during flow cytometry and cuvette-based fusion assays reconstituting endosomal fusion in vitro. We report that homotypic fusion in subapical endosomes derived from rat renal cortex, and immortalized visceral yolk sac cells in culture, is inhibited by the v-type H+-ATPase specific inhibitor bafilomycin A1. Inhibition of fusion by H+-ATPase is mediated by the membrane potential as collapsing the pH gradient with nigericin had no effect on homotypic endosomal fusion, while collapsing the membrane potential with valinomycin inhibited endosomal fusion. Utilizing an in vitro reconstitution assay this data provides the first direct evidence for a role of v-type H+-ATPase in mammalian homotypic endosomal fusion. The Journal of Membrane Biology Springer Journals

Membrane Potential Mediates H+-ATPase Dependence of ``Degradative Pathway'' Endosomal Fusion

Loading next page...
Copyright © Inc. by 1998 Springer-Verlag New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial