Membrane Ion Conductances of Mammalian Skeletal Muscle in the Post-Decompression State after High-Pressure Treatment

Membrane Ion Conductances of Mammalian Skeletal Muscle in the Post-Decompression State after... Exposure of excitable tissues to hyperbaric environments has been shown to alter membrane ion conductances, but only little is known about the state of the membranes of intact cells in the post-decompression phase following a prolonged high-pressure treatment. Furthermore, almost nothing is known about high-pressure effects on skeletal muscle membranes. Therefore, we investigated changes to the input resistances, membrane potentials and voltage-gated membrane currents for sodium (INa), potassium (IK) and calcium (ICa) ions under voltage-clamp conditions in enzymatically isolated intact mammalian single fibers following a 3-hr high-pressure treatment up to 25 MPa at +4°C. After a 3-hr 20 MPa treatment, the input resistance was increased but declined again for treatments with higher pressures. The resting membrane potentials were depolarized in the post-decompression phase following a 20-MPa high-pressure treatment; this could be explained by an increase in the Na+- over K+-permeability ratio and in intracellular [Na+]i. Following a 10-MPa high-pressure treatment, INa, IK and ICa amplitudes were similar compared to controls but were significantly reduced by 25 to 35% after a 3-hr 20-MPa high-pressure treatment. Interestingly, the voltage-dependent inactivation of INa and ICa seemed to be more stable at high pressures compared to the activation parameters, as no significant changes were found up to a 20-MPa treatment. For higher pressure applications (e.g., 25 MPa), there seemed to be a marked loss of membrane integrity and INa, IK and ICa almost disappeared. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Membrane Ion Conductances of Mammalian Skeletal Muscle in the Post-Decompression State after High-Pressure Treatment

Loading next page...
 
/lp/springer_journal/membrane-ion-conductances-of-mammalian-skeletal-muscle-in-the-post-umLo3ZNWUj
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0168-0
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial