Membrane Fluidity, Invasiveness and Dynamic Phenotype of Metastatic Prostate Cancer Cells after Treatment with Soy Isoflavones

Membrane Fluidity, Invasiveness and Dynamic Phenotype of Metastatic Prostate Cancer Cells after... Soy isoflavones represent hopeful unconventional remedies in the therapy of prostate cancer. The aim of our study was to determine the effects of genistein and daidzein on the parameters that reflect metastatic potential, membrane fluidity, invasiveness and dynamic phenotype in Matrigel of LNCaP and PC-3 prostate cancer cells. Cell viability tests, using a wide range of concentrations of soy isoflavones (6–75 μg/ml for 72 h), were conducted to determine their IC50 concentrations. Electron paramagnetic resonance investigations of prostate cancer cell membrane fluidity were performed at IC50 concentrations of genistein and daidzein (12.5 and 25 μg/ml, respectively, for 10 min). Genistein provoked significant increases in the membrane order parameter (which is reciprocally proportional to membrane fluidity) of 0.722 ± 0.006 (LNCaP), 0.753 ± 0.010 (LNCaP + genistein), 0.723 ± 0.007 (PC-3) and 0.741 ± 0.004 (PC-3 + genistein); however, no such effects were observed for daidzein. While both genistein and daidzein reduced the proliferation of prostate cancer cells at their respective IC50 concentrations, during the 72 h of incubation only genistein provoked effects on the dynamic phenotype and decreased invasiveness. The effect was more evident in PC-3 cells compared to LNCaP cells. Our results imply that (1) invasive activity is at least partially dependent on membrane fluidity, (2) genistein may exert its antimetastatic effects by changing the mechanical properties of prostate cancer cells and (3) daidzein should be applied at higher concentrations than genistein in order to achieve pharmacological effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Membrane Fluidity, Invasiveness and Dynamic Phenotype of Metastatic Prostate Cancer Cells after Treatment with Soy Isoflavones

Loading next page...
 
/lp/springer_journal/membrane-fluidity-invasiveness-and-dynamic-phenotype-of-metastatic-eqwqpIGHep
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-013-9531-1
Publisher site
See Article on Publisher Site

Abstract

Soy isoflavones represent hopeful unconventional remedies in the therapy of prostate cancer. The aim of our study was to determine the effects of genistein and daidzein on the parameters that reflect metastatic potential, membrane fluidity, invasiveness and dynamic phenotype in Matrigel of LNCaP and PC-3 prostate cancer cells. Cell viability tests, using a wide range of concentrations of soy isoflavones (6–75 μg/ml for 72 h), were conducted to determine their IC50 concentrations. Electron paramagnetic resonance investigations of prostate cancer cell membrane fluidity were performed at IC50 concentrations of genistein and daidzein (12.5 and 25 μg/ml, respectively, for 10 min). Genistein provoked significant increases in the membrane order parameter (which is reciprocally proportional to membrane fluidity) of 0.722 ± 0.006 (LNCaP), 0.753 ± 0.010 (LNCaP + genistein), 0.723 ± 0.007 (PC-3) and 0.741 ± 0.004 (PC-3 + genistein); however, no such effects were observed for daidzein. While both genistein and daidzein reduced the proliferation of prostate cancer cells at their respective IC50 concentrations, during the 72 h of incubation only genistein provoked effects on the dynamic phenotype and decreased invasiveness. The effect was more evident in PC-3 cells compared to LNCaP cells. Our results imply that (1) invasive activity is at least partially dependent on membrane fluidity, (2) genistein may exert its antimetastatic effects by changing the mechanical properties of prostate cancer cells and (3) daidzein should be applied at higher concentrations than genistein in order to achieve pharmacological effects.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Feb 16, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off