Melatonin Reduces Apoptosis Induced by Calcium Signaling in Human Leukocytes: Evidence for the Involvement of Mitochondria and Bax Activation

Melatonin Reduces Apoptosis Induced by Calcium Signaling in Human Leukocytes: Evidence for the... We have evaluated the effect of melatonin on apoptosis evoked by increases in [Ca2+] c in human leukocytes. Our results show that treatment of neutrophils with the calcium mobilizing agonist FMLP or the specific inhibitor of calcium reuptake thapsigargin induced a transient increase in [Ca2+] c . Our results also show that FMLP and thapsigargin increased caspase-9 and -3 activities and the active forms of both caspases. The effect of FMLP and thapsigargin on caspase activation was time-dependent. Similar results were obtained when lymphocytes were stimulated with thapsigargin. This stimulatory effect was accompanied by induction of mPTP, activation of the proapoptotic protein Bax and release of cytochrome c. However, when leukocytes were pretreated with melatonin, all of the apoptotic features indicated above were significantly reversed. Our results suggest that melatonin reduces caspase-9 and -3 activities induced by increases in [Ca2+] c in human leukocytes, which are produced through the inhibition of both mPTP and Bax activation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Melatonin Reduces Apoptosis Induced by Calcium Signaling in Human Leukocytes: Evidence for the Involvement of Mitochondria and Bax Activation

Loading next page...
 
/lp/springer_journal/melatonin-reduces-apoptosis-induced-by-calcium-signaling-in-human-1WfJXeXN6t
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-010-9230-0
Publisher site
See Article on Publisher Site

Abstract

We have evaluated the effect of melatonin on apoptosis evoked by increases in [Ca2+] c in human leukocytes. Our results show that treatment of neutrophils with the calcium mobilizing agonist FMLP or the specific inhibitor of calcium reuptake thapsigargin induced a transient increase in [Ca2+] c . Our results also show that FMLP and thapsigargin increased caspase-9 and -3 activities and the active forms of both caspases. The effect of FMLP and thapsigargin on caspase activation was time-dependent. Similar results were obtained when lymphocytes were stimulated with thapsigargin. This stimulatory effect was accompanied by induction of mPTP, activation of the proapoptotic protein Bax and release of cytochrome c. However, when leukocytes were pretreated with melatonin, all of the apoptotic features indicated above were significantly reversed. Our results suggest that melatonin reduces caspase-9 and -3 activities induced by increases in [Ca2+] c in human leukocytes, which are produced through the inhibition of both mPTP and Bax activation.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Feb 4, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off