Medicago truncatula dihydrodipicolinate synthase (DHDPS) enzymes display novel regulatory properties

Medicago truncatula dihydrodipicolinate synthase (DHDPS) enzymes display novel regulatory properties Lysine biosynthesis in plants is tightly regulated by feedback inhibition of the end product on the first enzyme of the lysine-specific branch, dihydrodipicolinate synthase (DHDPS). Three complete DHDPS coding sequences and one partial sequence were obtained in Medicago truncatula via inverse PCR. Analysis of the MtDHDPS sequences indicated the presence of isozymes (MtDHDPS2 and MtDHDPS3) with multiple amino acid substitutions on positions previously shown to be involved in feedback inhibition and of residues important for catalytic activity, possibly affecting the enzymatic properties of these isoforms. Sequences similar to MtDHDPS2 and 3 are present in Lotus japonicus and Glycine max, suggesting the existence of a specific conserved class of DHDPS genes within the Fabaceae family. The MtDHDPS genes were found by quantitative RT-PCR analysis to be expressed in an organ-specific manner in M. truncatula. All four MtDHDPS enzymes were expressed separately in Escherichia coli, revealing a strongly reduced sensitivity of the MtDHDPS2 protein to lysine feedback inhibition and a severely reduced activity of the MtDHDPS3 protein. Remarkably, MtDHDPS3 expression in Arabidopsis thaliana produced transgenic plants with a significantly increased threonine level, suggesting a dominant DHDPS inhibiting role of this isoform. This is supported by co-expression experiments in E. coli which indicate that AtDHDPS and MtDHDPS3 interact and may form hetero-oligomers with strongly reduced enzymatic activity. In conclusion, analysis of DHDPS in M. truncatula revealed the presence of unique isozymes displaying novel regulatory properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Medicago truncatula dihydrodipicolinate synthase (DHDPS) enzymes display novel regulatory properties

Loading next page...
 
/lp/springer_journal/medicago-truncatula-dihydrodipicolinate-synthase-dhdps-enzymes-display-fSQqviNL9J
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0008-5
Publisher site
See Article on Publisher Site

Abstract

Lysine biosynthesis in plants is tightly regulated by feedback inhibition of the end product on the first enzyme of the lysine-specific branch, dihydrodipicolinate synthase (DHDPS). Three complete DHDPS coding sequences and one partial sequence were obtained in Medicago truncatula via inverse PCR. Analysis of the MtDHDPS sequences indicated the presence of isozymes (MtDHDPS2 and MtDHDPS3) with multiple amino acid substitutions on positions previously shown to be involved in feedback inhibition and of residues important for catalytic activity, possibly affecting the enzymatic properties of these isoforms. Sequences similar to MtDHDPS2 and 3 are present in Lotus japonicus and Glycine max, suggesting the existence of a specific conserved class of DHDPS genes within the Fabaceae family. The MtDHDPS genes were found by quantitative RT-PCR analysis to be expressed in an organ-specific manner in M. truncatula. All four MtDHDPS enzymes were expressed separately in Escherichia coli, revealing a strongly reduced sensitivity of the MtDHDPS2 protein to lysine feedback inhibition and a severely reduced activity of the MtDHDPS3 protein. Remarkably, MtDHDPS3 expression in Arabidopsis thaliana produced transgenic plants with a significantly increased threonine level, suggesting a dominant DHDPS inhibiting role of this isoform. This is supported by co-expression experiments in E. coli which indicate that AtDHDPS and MtDHDPS3 interact and may form hetero-oligomers with strongly reduced enzymatic activity. In conclusion, analysis of DHDPS in M. truncatula revealed the presence of unique isozymes displaying novel regulatory properties.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 18, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off