Mechanistic approach for fabrication of gold nanoparticles by Nitzschiadiatom and theirantibacterial activity

Mechanistic approach for fabrication of gold nanoparticles by Nitzschiadiatom and... The problem of chemically synthesized nanoproducts motivated scientific community to explore ecofriendly methods of nanosynthesis. Diatoms belong to a group of aquatic, unicellular, photosynthetic microalgae have been scarcely investigated as a source of reducing and capping agents for nanosynthesis of pesticides and antibiotics. The present study reports a novel ecofriendly method for the fabrication of bioactive gold nanoparticles using locally isolated Nitzschia diatoms. The diatom-fabricated gold nanoparticles show characteristic ruby red colored with sharp absorbance peak at 529 nm. Electron microscopy confirmed irregular shape of gold nanoparticles, with average size of 43 nm and zeta potential of −16.8 mV. The effects of gold nanoparticles on diatom viability were investigated using light and electron microscopy. The mechanistic approach to shed light on how diatoms reacted after exposure to gold metal salt revealed that exposure to gold chloride triggers elevated levels of catalase and peroxidase (12.76 and 14.43 unit/mg protein, respectively) to relieve reactive oxygen species (ROS) stress induced by gold salt exposure. Investigation studies on mechanisms behind Nitzschia-mediated gold nanoparticles fabrication outlined the role of diatom proteins, polysaccharides in reduction, and stabilization of nanoparticles as confirmed by FT-IR analysis. Bioactivity of gold nanoparticles was accessed by coupling them with antibiotics (penicillin and streptomycin), which increased their antibacterial activity compared to individual nanoparticles and antibiotics (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). Overall, the present novel phyco-nanotechnological approach is a promising tool to be used as sustainable strategy in green nanotechnology as well as to reduce use of antibiotics in microbial control. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bioprocess and Biosystems Engineering Springer Journals

Mechanistic approach for fabrication of gold nanoparticles by Nitzschiadiatom and theirantibacterial activity

Loading next page...
 
/lp/springer_journal/mechanistic-approach-for-fabrication-of-gold-nanoparticles-by-MV1LbYE4h0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Chemistry; Biotechnology; Industrial and Production Engineering; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering; Food Science
ISSN
1615-7591
eISSN
1615-7605
D.O.I.
10.1007/s00449-017-1801-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial