Mechanisms of salt stress tolerance development in barley plants under the influence of 5-aminolevulinic acid

Mechanisms of salt stress tolerance development in barley plants under the influence of... Growing barley (Hordeum vulgare L.) plants for 7 days on NaCl solutions (20–200 mM) decreased chlorophyll (Chl) a and b content with respect to that in untreated control plants. The content of free proline and the plant ability to synthesize 5-aminolevulinic acid (ALA) started to increase in parallel at salt concentrations of 20–50 mM. The maximum amount of ALA accumulated in plants grown at 100 mM NaCl was twofold higher than in control plants grown on fresh water. In this case the proline content increased 2.8-fold. On further increase in salt concentration, the rate of ALA accumulation decreased, approaching control values at 150 mM NaCl; even lower rates were observed at 200 mM NaCl. The reduced ability to synthesize ALA was accompanied by an increase in proline content. The albino tissue of plants treated at the seed stage with the antibiotic streptomycin lost its ability to synthesize ALA needed for Chl formation. The proline content in the albino tissue was tenfold higher than in control green plants and was 30-fold higher when the plants were grown on solutions with 100 mM NaCl. No effect of NaCl on ALA-dehydratase activity was noted. As NaCl concentration was raised, there occurred the decrease in magnesium chelatase activity, accumulation of reactive oxygen species (ROS), the increase in ascorbate peroxidase activity, and a slight decrease in lipid peroxidation level. Growing plants in the presence of 150 mM NaCl and 10 or 60 mg/l exogenous ALA led to the increase in proline content (by a factor of 1.8 and 4.2, respectively) and to the decrease in ROS content, in comparison with plants grown on salt solutions without ALA. Furthermore, in the presence of exogenous ALA, the parameters of seedling growth became similar to those of NaCl-untreated plants. The role of ALA in plants as an antistress agent is considered. ALA is supposed to confer tolerance to salt stress by taking part in Chl and heme biosynthesis and also through functioning as a plant growth regulator. A hypothesis is put forward that the impairment of ALA-synthesizing ability may redirect metabolic conversions of glutamic acid from Chl and heme synthesis to the proline synthesis pathway, which would stimulate proline biosynthesis and improve salt tolerance. Russian Journal of Plant Physiology Springer Journals

Mechanisms of salt stress tolerance development in barley plants under the influence of 5-aminolevulinic acid

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2010 by Pleiades Publishing, Ltd.
Life Sciences; Plant Sciences ; Plant Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial