Mechanisms Coordinating Wheat Seedling Growth Response as Affected by Shoot/Root Ratio

Mechanisms Coordinating Wheat Seedling Growth Response as Affected by Shoot/Root Ratio Excision of four out of five roots in 7-day-old wheat seedlings (Triticum durum Desf.) rapidly suppressed shoot growth promoted biomass accumulation by the remained root largely due to its expanded branching. Next, the rate of shoot growth increased although was not completely recovered. After the reduction of the root system, the rate of photosynthesis in the leaves of seedlings did not decrease. As compared to the intact plants, auxins and cytokinins accumulated in the remained root, whereas in the growing part of the shoot, the level of auxins rapidly declined. Shoot growth rate was assumed to decrease after the excision of a part of the root system due to lower extensibility of growing tissue, and the promotion of lateral root formation on the remained root apparently resulted from active redistribution of phytohormones and assimilates between plant organs. The prime role of hormonal signals in the coordination of shoot and root growth is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Mechanisms Coordinating Wheat Seedling Growth Response as Affected by Shoot/Root Ratio

Loading next page...
 
/lp/springer_journal/mechanisms-coordinating-wheat-seedling-growth-response-as-affected-by-RKFPbZGAIU
Publisher
Springer Journals
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0101-y
Publisher site
See Article on Publisher Site

Abstract

Excision of four out of five roots in 7-day-old wheat seedlings (Triticum durum Desf.) rapidly suppressed shoot growth promoted biomass accumulation by the remained root largely due to its expanded branching. Next, the rate of shoot growth increased although was not completely recovered. After the reduction of the root system, the rate of photosynthesis in the leaves of seedlings did not decrease. As compared to the intact plants, auxins and cytokinins accumulated in the remained root, whereas in the growing part of the shoot, the level of auxins rapidly declined. Shoot growth rate was assumed to decrease after the excision of a part of the root system due to lower extensibility of growing tissue, and the promotion of lateral root formation on the remained root apparently resulted from active redistribution of phytohormones and assimilates between plant organs. The prime role of hormonal signals in the coordination of shoot and root growth is discussed.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Sep 28, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off