Mechanisms and physiological role of polarity in plants

Mechanisms and physiological role of polarity in plants The concept of polarity was the starting point for the attempts of many investigators to understand the principles of differentiation, because the polar organization underlies specific three-dimensional structure of the organism and provides for the integrity and coordination of its functions. The polarity axes are established at the stage of zygote, extending to the developing embryo, and they “vectorize” subsequent plant growth and development. Polarization of cells and tissues is crucial for plant morphogenesis, because the emerging morphogenetic gradients provide the basis for differential genome activity at various stages of plant development. This review deals with the polarity phenomena and the mechanisms of symmetry axis formation at the level of cells and plant tissues. The roles of electrical gradients, Ca2+ ions, auxin, cytoskeleton, ROP-proteins, phosphoinositides, and microRNA in polarization of cells and tissues are considered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Mechanisms and physiological role of polarity in plants

Loading next page...
 
/lp/springer_journal/mechanisms-and-physiological-role-of-polarity-in-plants-sZMwJlU607
Publisher
Springer Journals
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712040085
Publisher site
See Article on Publisher Site

Abstract

The concept of polarity was the starting point for the attempts of many investigators to understand the principles of differentiation, because the polar organization underlies specific three-dimensional structure of the organism and provides for the integrity and coordination of its functions. The polarity axes are established at the stage of zygote, extending to the developing embryo, and they “vectorize” subsequent plant growth and development. Polarization of cells and tissues is crucial for plant morphogenesis, because the emerging morphogenetic gradients provide the basis for differential genome activity at various stages of plant development. This review deals with the polarity phenomena and the mechanisms of symmetry axis formation at the level of cells and plant tissues. The roles of electrical gradients, Ca2+ ions, auxin, cytoskeleton, ROP-proteins, phosphoinositides, and microRNA in polarization of cells and tissues are considered.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 15, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off