Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Mechanism of sodium chloride diossolving in water and the process of the solution aging

Mechanism of sodium chloride diossolving in water and the process of the solution aging By the method of Flicker Noise Spectroscopy (FNS) we studied the process of sodium chloride dissolving in water (3.5 wt %) at 294 K on the level of long-range order formation in liquid. It is established that the process of dissolving the salt includes the following steps: formation of instable colloid particles, instable solvate clusters of the salt ion pairs (iSCIP), instable dissolved polymers of globular type, and 12 h later beginning of a new process of formation stable solvate clusters of the salt ion pairs (sSCIP) and stable polymer globules on their basis. Stroke diagrams of the cluster nano-structure and a model of aging the salt solution are presented. Influence of atmospheric pressure on the SCIP average weight is demonstrated. It is concluded that on the SCIP surface there is a porous layer of solvate water with membrane properties. The cluster structure of the 3.5 wt % solution prepared by dissolving the salt is shown to differ from that of the solution obtained by dilution. The solutions long-range order is formed by the nano dispersion of the water solvated salt crystal nuclei. The mechanism of the solution aging is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Mechanism of sodium chloride diossolving in water and the process of the solution aging

Loading next page...
1
 
/lp/springer_journal/mechanism-of-sodium-chloride-diossolving-in-water-and-the-process-of-MKsIxh5tRm

References (14)

Publisher
Springer Journals
Copyright
Copyright © 2007 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
DOI
10.1134/S1070427207070452
Publisher site
See Article on Publisher Site

Abstract

By the method of Flicker Noise Spectroscopy (FNS) we studied the process of sodium chloride dissolving in water (3.5 wt %) at 294 K on the level of long-range order formation in liquid. It is established that the process of dissolving the salt includes the following steps: formation of instable colloid particles, instable solvate clusters of the salt ion pairs (iSCIP), instable dissolved polymers of globular type, and 12 h later beginning of a new process of formation stable solvate clusters of the salt ion pairs (sSCIP) and stable polymer globules on their basis. Stroke diagrams of the cluster nano-structure and a model of aging the salt solution are presented. Influence of atmospheric pressure on the SCIP average weight is demonstrated. It is concluded that on the SCIP surface there is a porous layer of solvate water with membrane properties. The cluster structure of the 3.5 wt % solution prepared by dissolving the salt is shown to differ from that of the solution obtained by dilution. The solutions long-range order is formed by the nano dispersion of the water solvated salt crystal nuclei. The mechanism of the solution aging is discussed.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Aug 31, 2007

There are no references for this article.