Mechanism of Shrinkage Activation of Nonselective Cation Channels in M-1 Mouse Cortical Collecting Duct Cells

Mechanism of Shrinkage Activation of Nonselective Cation Channels in M-1 Mouse Cortical... It has previously been shown that osmotic cell shrinkage activates a nonselective cation (NSC) channel in M-1 mouse cortical collecting duct cells [54] and in a variety of other cell types [20]. In the present study we further characterized the shrinkage-activated NSC channel in M-1 cells and its mechanism of activation using whole-cell current recordings. Osmotic cell shrinkage induced by addition of 100 mm sucrose to the bath solution caused a 20-fold increase in whole-cell inward currents from −10.8 ± 1.5 pA to −211 ± 10.2 pA (n= 103). A similar response was observed when cell shrinkage was elicited using a hypo-osmotic pipette solution. This indicates that cell shrinkage and not extracellular osmolarity per se is the signal for current activation. Cation substitution experiments revealed that the activated channels discriminate poorly between monovalent cations with a selectivity sequence NH4 (1.2) ≥ Na+ (1) ≈ K+ (0.9) ≈ Li+ (0.9). In contrast there was no measurable permeability for Ca2+ or Ba2+ and the cation-to-anion permeability ratio was about 14. The DPC-derivatives flufenamic acid, 4-methyl-DPC and DCDPC were the most effective blockers followed by LOE 908, while amiloride and bumetanide were ineffective. The putative channel activator maitotoxin had no effect. Current activation was dependent upon the presence of intracellular ATP and Mg2+ and was inhibited by staurosporine (1 μm) and calphostin C (1 μm). Moreover, cytochalasin D (10 μm) and taxol (2 μm) reduced the current response to cell shrinkage. These findings suggest that the activation mechanism of the shrinkage-activated NSC channel involves protein kinase mediated phosphorylation steps and cytoskeletal elements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Mechanism of Shrinkage Activation of Nonselective Cation Channels in M-1 Mouse Cortical Collecting Duct Cells

Loading next page...
 
/lp/springer_journal/mechanism-of-shrinkage-activation-of-nonselective-cation-channels-in-m-KUT9goyLFR
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320010006
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial