Mechanism of direct cell interactions. Self-organization of protein synthesis rhythm

Mechanism of direct cell interactions. Self-organization of protein synthesis rhythm Primary 24-hour cultures of hepatocytes on slides in a serum-free medium were studied. Circahoralian rhythm of protein synthesis served as a marker of cell cooperation. Stimulation of protein kinase activities by phorbol 12-myristate 13-acetate at 0.5 or 1.0 μM or forskolin at 10 μM led to visualization of the protein synthesis rhythm in sparse cultures, which were asynchronous in the control and with linear kinetics of protein synthesis. Inhibitors of protein kinase activities H7 (1-(5-isoquinolinylsulfonyl)-5-methylpiperasine dihydrochloride) at 40 μM or H8 (N-(2-[methylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride) at 25 μM eliminated the protein synthesis rhythm in dense cultures, which are normally synchronous with oscillatory kinetics of protein synthesis. After inhibition of the protein kinase activities, gangliosides or phenylephrine did not synchronize the protein synthesis rhythm. Phorbol 12-myristate 13-acetate modulated the protein synthesis rhythm, shifted the rhythm phase, i.e., stimulation of the protein kinase activities, and, correspondingly, protein phosphorylation may be a factor of synchronization of synthesis oscillations in individual cells and of population rhythm formation. cAMP-dependent protein kinases also affect the protein synthesis rhythm. Thus, a cascade of processes leading to self-organization of hepatocytes during formation of summarized protein synthesis was revealed in a series of studies: signal of gangliosides or other calcium agonists → changes in the level of calcium ions in cytoplasm → increased protein kinase activities → protein phosphorylation → modulation of individual oscillations in the intensity of protein synthesis and their coordination in a summarized rhythm. Protein phosphorylation is a key process. The mechanisms of cell self-organization are similar in vitro and in vivo, specifically in the liver in situ. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Mechanism of direct cell interactions. Self-organization of protein synthesis rhythm

Loading next page...
 
/lp/springer_journal/mechanism-of-direct-cell-interactions-self-organization-of-protein-9WCQrZ0qt4
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360406050055
Publisher site
See Article on Publisher Site

Abstract

Primary 24-hour cultures of hepatocytes on slides in a serum-free medium were studied. Circahoralian rhythm of protein synthesis served as a marker of cell cooperation. Stimulation of protein kinase activities by phorbol 12-myristate 13-acetate at 0.5 or 1.0 μM or forskolin at 10 μM led to visualization of the protein synthesis rhythm in sparse cultures, which were asynchronous in the control and with linear kinetics of protein synthesis. Inhibitors of protein kinase activities H7 (1-(5-isoquinolinylsulfonyl)-5-methylpiperasine dihydrochloride) at 40 μM or H8 (N-(2-[methylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride) at 25 μM eliminated the protein synthesis rhythm in dense cultures, which are normally synchronous with oscillatory kinetics of protein synthesis. After inhibition of the protein kinase activities, gangliosides or phenylephrine did not synchronize the protein synthesis rhythm. Phorbol 12-myristate 13-acetate modulated the protein synthesis rhythm, shifted the rhythm phase, i.e., stimulation of the protein kinase activities, and, correspondingly, protein phosphorylation may be a factor of synchronization of synthesis oscillations in individual cells and of population rhythm formation. cAMP-dependent protein kinases also affect the protein synthesis rhythm. Thus, a cascade of processes leading to self-organization of hepatocytes during formation of summarized protein synthesis was revealed in a series of studies: signal of gangliosides or other calcium agonists → changes in the level of calcium ions in cytoplasm → increased protein kinase activities → protein phosphorylation → modulation of individual oscillations in the intensity of protein synthesis and their coordination in a summarized rhythm. Protein phosphorylation is a key process. The mechanisms of cell self-organization are similar in vitro and in vivo, specifically in the liver in situ.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Sep 21, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off