Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Mechanics of growth pulsations as the basis of growth and morphogenesis in colonial hydroids

Mechanics of growth pulsations as the basis of growth and morphogenesis in colonial hydroids Growth and shaping in colonial hydroids (Hydrozoa, Cnidaria) are realized due to the functioning of special colony elements, growing tips located at the terminuses of branched colony body. Unlike in plants, the growing tips of colonial hydroids are sites of active cell movements related to morphogenesis and lacking proliferation. The activity of hydroid growing tips is expressed as growth pulsations: cyclic repetitions of their apex extensions and retractions. The parameters of growth pulsations are species specific and related to the shape of a forming element. Here, the succession of cell movements and changes in mutual arrangement within the growing tip are described in detail at all pulsation phases. The role of the inner cell layer in the tip activity was demonstrated for the first time. Relationships between the growing tip parameters, length and diameter, and pulsations are discussed. A scheme is proposed for cyclic processes in both epithelial layers. An explanation is provided for the two-step mode of growth pulsations with relative independence of the main phases. It was proposed that successive activities of the tip ecto-and endoderm serve as driving forces provided there is a hard outer skeleton. This scheme makes it possible to explain some patterns of growth and morphogenesis in colonial hydroids, such as gradually increasing growth rate of a new tip and its maximum growth rate, differences in the parameters of growth pulsations between shoot and stolon tips, shoot base inclination towards the stolon tip, etc., and provides a basis for further improvement of the model of morphogenesis in hydroids. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Mechanics of growth pulsations as the basis of growth and morphogenesis in colonial hydroids

Russian Journal of Developmental Biology , Volume 37 (2) – Mar 27, 2006

Loading next page...
 
/lp/springer_journal/mechanics-of-growth-pulsations-as-the-basis-of-growth-and-xWwo5pu54b

References (60)

Publisher
Springer Journals
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
DOI
10.1134/S1062360406020056
Publisher site
See Article on Publisher Site

Abstract

Growth and shaping in colonial hydroids (Hydrozoa, Cnidaria) are realized due to the functioning of special colony elements, growing tips located at the terminuses of branched colony body. Unlike in plants, the growing tips of colonial hydroids are sites of active cell movements related to morphogenesis and lacking proliferation. The activity of hydroid growing tips is expressed as growth pulsations: cyclic repetitions of their apex extensions and retractions. The parameters of growth pulsations are species specific and related to the shape of a forming element. Here, the succession of cell movements and changes in mutual arrangement within the growing tip are described in detail at all pulsation phases. The role of the inner cell layer in the tip activity was demonstrated for the first time. Relationships between the growing tip parameters, length and diameter, and pulsations are discussed. A scheme is proposed for cyclic processes in both epithelial layers. An explanation is provided for the two-step mode of growth pulsations with relative independence of the main phases. It was proposed that successive activities of the tip ecto-and endoderm serve as driving forces provided there is a hard outer skeleton. This scheme makes it possible to explain some patterns of growth and morphogenesis in colonial hydroids, such as gradually increasing growth rate of a new tip and its maximum growth rate, differences in the parameters of growth pulsations between shoot and stolon tips, shoot base inclination towards the stolon tip, etc., and provides a basis for further improvement of the model of morphogenesis in hydroids.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Mar 27, 2006

There are no references for this article.