Mechanical stimulation-induced chilling tolerance in tobacco suspension cultured cells and its relation to proline

Mechanical stimulation-induced chilling tolerance in tobacco suspension cultured cells and its... Mechanical stimulation (MS), widely existing but usually ignored in nature, is one of the major environmental stress factors. MS by increasing the rotational speed of shaker incubator could alleviate a decrease in vitality of tobacco (Nicotiana tabacum L.) suspension cultured cells and reduce the accumulation of MDA under chilling stress at 1°C, which in turn improved survival percentage under chilling stress and regrowth ability of tobacco suspension cells after chilling stress. In addition, MS could increase the activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and induce the accumulation of endogenous proline in tobacco cells; exogenously applied proline also could enhance its endogenous level under normal culture conditions and survival percent-age of the cells under chilling stress. These results suggest that MS could improve chilling tolerance of tobacco suspension cells and the acquisition of this chilling tolerance was related to proline. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Mechanical stimulation-induced chilling tolerance in tobacco suspension cultured cells and its relation to proline

Loading next page...
 
/lp/springer_journal/mechanical-stimulation-induced-chilling-tolerance-in-tobacco-zMhuNYqWqY
Publisher
Springer Journals
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443712060118
Publisher site
See Article on Publisher Site

Abstract

Mechanical stimulation (MS), widely existing but usually ignored in nature, is one of the major environmental stress factors. MS by increasing the rotational speed of shaker incubator could alleviate a decrease in vitality of tobacco (Nicotiana tabacum L.) suspension cultured cells and reduce the accumulation of MDA under chilling stress at 1°C, which in turn improved survival percentage under chilling stress and regrowth ability of tobacco suspension cells after chilling stress. In addition, MS could increase the activity of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and induce the accumulation of endogenous proline in tobacco cells; exogenously applied proline also could enhance its endogenous level under normal culture conditions and survival percent-age of the cells under chilling stress. These results suggest that MS could improve chilling tolerance of tobacco suspension cells and the acquisition of this chilling tolerance was related to proline.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 28, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off