Mechanical behavior of composite parts adhesively jointed with the insert double-lap joint under tensile load

Mechanical behavior of composite parts adhesively jointed with the insert double-lap joint under... In this paper, composite parts jointed with insert double-lap joint (DLJ) subjected to tensile load were analyzed by using 3-D finite element method (FEM). In the analysis, the composite parts were carbon/epoxy (T 700) with different fiber orientation angles and the adhesive was DP 410. The models for the numerical analyses were generated by using the ANSYS 14.5 software package. The finite element analyses (FEA) were carried out to predict the failure loads. Stress at x, y, and z directions; shear stresses; and the von-Mises stresses on adhesive were obtained at the time of the failure for predetermined parameters. Consequently, the effects of orientation angles, overlap widths and length, and adhesive layer were examined. The most effective parameters were determined for composite parts adhesively bonded with the double lap joint. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Welding in the World Springer Journals

Mechanical behavior of composite parts adhesively jointed with the insert double-lap joint under tensile load

Loading next page...
 
/lp/springer_journal/mechanical-behavior-of-composite-parts-adhesively-jointed-with-the-xEmvHJN6Vf
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by International Institute of Welding
Subject
Materials Science; Metallic Materials; Continuum Mechanics and Mechanics of Materials; Theoretical and Applied Mechanics
ISSN
0043-2288
eISSN
1878-6669
D.O.I.
10.1007/s40194-017-0543-9
Publisher site
See Article on Publisher Site

Abstract

In this paper, composite parts jointed with insert double-lap joint (DLJ) subjected to tensile load were analyzed by using 3-D finite element method (FEM). In the analysis, the composite parts were carbon/epoxy (T 700) with different fiber orientation angles and the adhesive was DP 410. The models for the numerical analyses were generated by using the ANSYS 14.5 software package. The finite element analyses (FEA) were carried out to predict the failure loads. Stress at x, y, and z directions; shear stresses; and the von-Mises stresses on adhesive were obtained at the time of the failure for predetermined parameters. Consequently, the effects of orientation angles, overlap widths and length, and adhesive layer were examined. The most effective parameters were determined for composite parts adhesively bonded with the double lap joint.

Journal

Welding in the WorldSpringer Journals

Published: Jan 8, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off