Mechanical and UV absorption behavior of zinc oxide nanoparticles: reinforced poly(vinyl alcohol-g-acrylonitrile) nanocomposite films

Mechanical and UV absorption behavior of zinc oxide nanoparticles: reinforced poly(vinyl... In the present work PVA-g-PAN/ZnO nanocomposite films were prepared by free radical graft copolymerization of acrylonitrile on to PVA and subsequent in situ precipitation of ZnO nanoparticles into the polymer matrix. The films were characterized by FTIR, Raman spectroscopy, differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). The size of the crystallites and extents of crystallinity were ascertained by X-ray diffraction (XRD) analysis. The SEM with energy dispersive X-ray analysis (EDX) showed that the ZnO nanoparticles were uniformly dispersed within the host grafted copolymer matrix. The transmission electron microscopy (TEM) results clearly indicated that the size of nanoparticles varied in the range 10–30 nm. The UV-absorption properties showed that the films were capable of absorbing more than 95% of UV radiations. Photoluminescence (PL) measurements revealed the presence of defects in the synthesized nanocomposite films. The mechanical properties of the PVA-g-PAN/ZnO nanocomposites such as microhardness and tensile strength were also studied. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Bulletin Springer Journals

Mechanical and UV absorption behavior of zinc oxide nanoparticles: reinforced poly(vinyl alcohol-g-acrylonitrile) nanocomposite films

Loading next page...
 
/lp/springer_journal/mechanical-and-uv-absorption-behavior-of-zinc-oxide-nanoparticles-uv9O1joseq
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Polymer Sciences; Soft and Granular Matter, Complex Fluids and Microfluidics; Characterization and Evaluation of Materials; Physical Chemistry; Organic Chemistry
ISSN
0170-0839
eISSN
1436-2449
D.O.I.
10.1007/s00289-017-1942-1
Publisher site
See Article on Publisher Site

Abstract

In the present work PVA-g-PAN/ZnO nanocomposite films were prepared by free radical graft copolymerization of acrylonitrile on to PVA and subsequent in situ precipitation of ZnO nanoparticles into the polymer matrix. The films were characterized by FTIR, Raman spectroscopy, differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). The size of the crystallites and extents of crystallinity were ascertained by X-ray diffraction (XRD) analysis. The SEM with energy dispersive X-ray analysis (EDX) showed that the ZnO nanoparticles were uniformly dispersed within the host grafted copolymer matrix. The transmission electron microscopy (TEM) results clearly indicated that the size of nanoparticles varied in the range 10–30 nm. The UV-absorption properties showed that the films were capable of absorbing more than 95% of UV radiations. Photoluminescence (PL) measurements revealed the presence of defects in the synthesized nanocomposite films. The mechanical properties of the PVA-g-PAN/ZnO nanocomposites such as microhardness and tensile strength were also studied.

Journal

Polymer BulletinSpringer Journals

Published: Feb 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off