Mechanical and metal adsorption properties of emulsion gel adsorbents composed of PEGDA-co-PEG hydrogels and tri-n-octylamine

Mechanical and metal adsorption properties of emulsion gel adsorbents composed of PEGDA-co-PEG... A novel type of emulsion gel adsorbent consisting of a polymeric hydrogel containing randomly distributed oil microdroplets of an extractant was developed for metal separation. A copolymer hydrogel composed of poly(ethylene glycol) diacrylate (PEGDA; cross-linking monomer) and polyethylene glycol (PEG), i.e., a PEGDA-co-PEG hydrogel, was developed; the hydrogel with PEGDA = 500 mol/m3 and PEG = 50 kg/m3 possessed improved flexibility and strength. The emulsion gel containing an amine extractant, tri-n-octylamine, successfully adsorbed Zn(II) ions. The metal–extractant complexation process and its pH dependence in the emulsion gel were comparable to those of the solvent extraction method. Investigation of the metal adsorption kinetics revealed that diffusion of the solute in the hydrogel phase is fast, and diffusion (accumulation) in the organic extractant phase is the rate-determining step. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Bulletin Springer Journals

Mechanical and metal adsorption properties of emulsion gel adsorbents composed of PEGDA-co-PEG hydrogels and tri-n-octylamine

Loading next page...
 
/lp/springer_journal/mechanical-and-metal-adsorption-properties-of-emulsion-gel-adsorbents-ByRrRKtZTM
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Chemistry; Polymer Sciences; Soft and Granular Matter, Complex Fluids and Microfluidics; Characterization and Evaluation of Materials; Physical Chemistry; Organic Chemistry
ISSN
0170-0839
eISSN
1436-2449
D.O.I.
10.1007/s00289-017-2116-x
Publisher site
See Article on Publisher Site

Abstract

A novel type of emulsion gel adsorbent consisting of a polymeric hydrogel containing randomly distributed oil microdroplets of an extractant was developed for metal separation. A copolymer hydrogel composed of poly(ethylene glycol) diacrylate (PEGDA; cross-linking monomer) and polyethylene glycol (PEG), i.e., a PEGDA-co-PEG hydrogel, was developed; the hydrogel with PEGDA = 500 mol/m3 and PEG = 50 kg/m3 possessed improved flexibility and strength. The emulsion gel containing an amine extractant, tri-n-octylamine, successfully adsorbed Zn(II) ions. The metal–extractant complexation process and its pH dependence in the emulsion gel were comparable to those of the solvent extraction method. Investigation of the metal adsorption kinetics revealed that diffusion of the solute in the hydrogel phase is fast, and diffusion (accumulation) in the organic extractant phase is the rate-determining step.

Journal

Polymer BulletinSpringer Journals

Published: Jul 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off