Mechanical and Electrokinetic Effects of Polyamines/Phospholipid Interactions in Model Membranes

Mechanical and Electrokinetic Effects of Polyamines/Phospholipid Interactions in Model Membranes The mechanical and electrical properties of phospholipids layers influenced by interaction with polyamines were determined by measuring surface pressure and compression modulus of monolayers and zeta potential of liposomes. The saturated derivative of phosphatidic acid (DPPA) formed layers of the organization varying with compression degree. Contact of DPPA layers with polyamines present in the subphase resulted in changing their mechanical properties and the conditions in which the layer reorganization appears. The parameters corresponding to the layer reorganization depended on the size and charge of polyamines’ molecules. The values of: area per DPPA molecule, surface pressure at the point of layer structure reorganization, and surface pressure at the point of collapse characterizing of DPPA layers in the studied systems were determined. It was found that polyamines influenced to a much lesser extent the mechanical properties of monolayers formed from unsaturated derivative of phosphatidic acid slightly increasing its mechanical resistance in the range of higher molecular packing. The results of electrokinetic measurements revealed that surface charge of phosphatidic acid liposomes was effectively neutralized in the presence of polyamines. A similar effect was observed for phosphatidyl glycerol and for negatively charged polystyrene latex particles used as a reference. The influence of polyamines on the mechanical properties of DPPA layers was interpreted assuming a possibility of penetration of the lipid layer by polyamines’ molecules. Comparison of action of putrescine and calcium ions and effects of polyamines on phosphatidyl glycerol provided additional justification for the proposed interpretation of the observed effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Mechanical and Electrokinetic Effects of Polyamines/Phospholipid Interactions in Model Membranes

Loading next page...
 
/lp/springer_journal/mechanical-and-electrokinetic-effects-of-polyamines-phospholipid-JCiBErKDTr
Publisher
Springer US
Copyright
Copyright © 2013 by The Author(s)
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-013-9614-z
Publisher site
See Article on Publisher Site

Abstract

The mechanical and electrical properties of phospholipids layers influenced by interaction with polyamines were determined by measuring surface pressure and compression modulus of monolayers and zeta potential of liposomes. The saturated derivative of phosphatidic acid (DPPA) formed layers of the organization varying with compression degree. Contact of DPPA layers with polyamines present in the subphase resulted in changing their mechanical properties and the conditions in which the layer reorganization appears. The parameters corresponding to the layer reorganization depended on the size and charge of polyamines’ molecules. The values of: area per DPPA molecule, surface pressure at the point of layer structure reorganization, and surface pressure at the point of collapse characterizing of DPPA layers in the studied systems were determined. It was found that polyamines influenced to a much lesser extent the mechanical properties of monolayers formed from unsaturated derivative of phosphatidic acid slightly increasing its mechanical resistance in the range of higher molecular packing. The results of electrokinetic measurements revealed that surface charge of phosphatidic acid liposomes was effectively neutralized in the presence of polyamines. A similar effect was observed for phosphatidyl glycerol and for negatively charged polystyrene latex particles used as a reference. The influence of polyamines on the mechanical properties of DPPA layers was interpreted assuming a possibility of penetration of the lipid layer by polyamines’ molecules. Comparison of action of putrescine and calcium ions and effects of polyamines on phosphatidyl glycerol provided additional justification for the proposed interpretation of the observed effects.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Dec 12, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off