Mechanical and dielectric behavior of poly(vinylidene)–poly(arylene ether nitrile) composites as film capacitors for energy storage applications

Mechanical and dielectric behavior of poly(vinylidene)–poly(arylene ether nitrile) composites... Novel polymer composites PEN/PVDF were prepared from poly(arylene ether nitrile) (PEN) and poly(vinylidene fluoride) (PVDF) via solution mixing. Due to the toughening effect of PVDF, PEN/PVDF blends with 5 wt % PVDF exhibit higher tensile strength (106 MPa) and breaking elongation (8.09%) than pure PEN does. Because of introduction of PVDF and interfacial polarization, the dielectric constant of PEN/PVDF blends at 1 kHz and room temperature increases from 3.3 to 4.5 with increasing content of PVDF. The dissipation factor (tanδ) of PEN/PVDF blends is relatively low (<0.04) in a very wide frequency range from 250 Hz to 100 kHz. The PEN/PVDF blends show certain piezoelectric behavior (d 33 from 0.9 to 1 pC/N) due to the contribution of PVDF. After polarization, the piezoelectric coefficient d 33 somewhat increases. The results suggest that PEN/PVDF blends will have potential application in electronic information fields, especially in film capacitors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Mechanical and dielectric behavior of poly(vinylidene)–poly(arylene ether nitrile) composites as film capacitors for energy storage applications

Loading next page...
 
/lp/springer_journal/mechanical-and-dielectric-behavior-of-poly-vinylidene-poly-arylene-q3UCNGXgZQ
Publisher
Springer Journals
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S10704272150120198
Publisher site
See Article on Publisher Site

Abstract

Novel polymer composites PEN/PVDF were prepared from poly(arylene ether nitrile) (PEN) and poly(vinylidene fluoride) (PVDF) via solution mixing. Due to the toughening effect of PVDF, PEN/PVDF blends with 5 wt % PVDF exhibit higher tensile strength (106 MPa) and breaking elongation (8.09%) than pure PEN does. Because of introduction of PVDF and interfacial polarization, the dielectric constant of PEN/PVDF blends at 1 kHz and room temperature increases from 3.3 to 4.5 with increasing content of PVDF. The dissipation factor (tanδ) of PEN/PVDF blends is relatively low (<0.04) in a very wide frequency range from 250 Hz to 100 kHz. The PEN/PVDF blends show certain piezoelectric behavior (d 33 from 0.9 to 1 pC/N) due to the contribution of PVDF. After polarization, the piezoelectric coefficient d 33 somewhat increases. The results suggest that PEN/PVDF blends will have potential application in electronic information fields, especially in film capacitors.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Mar 3, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off