Measuring void fraction and velocity fields of a stepped spillway for skimming flow using non-intrusive methods

Measuring void fraction and velocity fields of a stepped spillway for skimming flow using... Stepped spillways have higher energy dissipation than smoother hydraulic structures used to divert flood discharges. The inception point related to air entrainment is, however, located further upstream causing an undesired bulking of the flow depth. For large discharge rates and for straight stepped spillways, the skimming flow regime may be assumed two dimensional; this is an attractive feature for the application of non-intrusive flow visualization techniques because these methods measure the flow characteristics in the vicinity of the sidewalls which are likely to correlate with the flow at the centre of the flume. This paper tests the hypothesis that such techniques can be used to measure the flow inside the flume. The hypothesis is tested against measurements taken with an intrusive probe. Void fraction contour lines and velocity fields are obtained in 12 different stepped spillway configurations using the image processing procedure and the bubble image velocimetry, respectively. The void fraction and velocity results are overall consistent with the probe measurements. The velocity fields show a persistent underestimation of the probe measurements which can at least be partially explained by sidewall effects and possible probe’s overestimation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Measuring void fraction and velocity fields of a stepped spillway for skimming flow using non-intrusive methods

Loading next page...
 
/lp/springer_journal/measuring-void-fraction-and-velocity-fields-of-a-stepped-spillway-for-8dGpUni93x
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1732-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial