Measuring velocity fields in wind tunnels with holographic interferometry

Measuring velocity fields in wind tunnels with holographic interferometry This paper investigates the feasibility of using holographic interferometry in wind tunnel flows for measuring velocity fields rather than density or temperature fields. First results were obtained in a vortex street behind a cylinder at Re=190(U ∞=0.7 m/s). The light scattered from an illuminated fluid plane was holographically recorded twice with the same reference beam. Using a time interval of 10 μs, local fluid displacements smaller than a few microns were recorded. The holographic plate was placed in front and as close as possible to the fluid plane. The interferograms obtained from the hologram reconstruction give information about one velocity component, at 45° with the illuminated plane. The alignment of the cylinder axis with this 45° direction provided definite confirmation about the vortex street having a non-negligible axial velocity. The constant velocity fluid region has proven to be very useful for quantifying the velocity information contained in the interferogram. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Measuring velocity fields in wind tunnels with holographic interferometry

Loading next page...
 
/lp/springer_journal/measuring-velocity-fields-in-wind-tunnels-with-holographic-L1kyTQbCpi
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480000146
Publisher site
See Article on Publisher Site

Abstract

This paper investigates the feasibility of using holographic interferometry in wind tunnel flows for measuring velocity fields rather than density or temperature fields. First results were obtained in a vortex street behind a cylinder at Re=190(U ∞=0.7 m/s). The light scattered from an illuminated fluid plane was holographically recorded twice with the same reference beam. Using a time interval of 10 μs, local fluid displacements smaller than a few microns were recorded. The holographic plate was placed in front and as close as possible to the fluid plane. The interferograms obtained from the hologram reconstruction give information about one velocity component, at 45° with the illuminated plane. The alignment of the cylinder axis with this 45° direction provided definite confirmation about the vortex street having a non-negligible axial velocity. The constant velocity fluid region has proven to be very useful for quantifying the velocity information contained in the interferogram.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 6, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off