Measuring Tollmien–Schlichting waves using phase-averaged particle image velocimetry

Measuring Tollmien–Schlichting waves using phase-averaged particle image velocimetry This article addresses the direct experimental measurement of Tollmien–Schlichting waves on a flat plate, when the laminar boundary layer is excited by velocity perturbations; the free stream velocity was 16 m/s, the excitation frequency 250 Hz. The two-dimensional velocity field in proximity of the flat plate was captured using a conventional PIV system; however, the image recording was phase locked with the disturbance source and ensemble averaging was used to obtain characteristics of the Tollmien–Schichting waves. In particular, after subtraction of the mean velocity, the characteristics of the excited waves in terms of streamlines were extracted, revealing that the investigated waves represented velocity deviations with an order of magnitude of 1 % of the undisturbed free stream flow. This study is a prelude to the use of the same technique to visualize the effect of dielectric barrier discharge plasma actuators on the suppression of such Tollmien–Schlichting waves, which is difficult using other measurement techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Measuring Tollmien–Schlichting waves using phase-averaged particle image velocimetry

Loading next page...
 
/lp/springer_journal/measuring-tollmien-schlichting-waves-using-phase-averaged-particle-K4hXHTOHD2
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1315-3
Publisher site
See Article on Publisher Site

Abstract

This article addresses the direct experimental measurement of Tollmien–Schlichting waves on a flat plate, when the laminar boundary layer is excited by velocity perturbations; the free stream velocity was 16 m/s, the excitation frequency 250 Hz. The two-dimensional velocity field in proximity of the flat plate was captured using a conventional PIV system; however, the image recording was phase locked with the disturbance source and ensemble averaging was used to obtain characteristics of the Tollmien–Schichting waves. In particular, after subtraction of the mean velocity, the characteristics of the excited waves in terms of streamlines were extracted, revealing that the investigated waves represented velocity deviations with an order of magnitude of 1 % of the undisturbed free stream flow. This study is a prelude to the use of the same technique to visualize the effect of dielectric barrier discharge plasma actuators on the suppression of such Tollmien–Schlichting waves, which is difficult using other measurement techniques.

Journal

Experiments in FluidsSpringer Journals

Published: May 24, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off