Measuring in-network node similarity based on neighborhoods: a unified parametric approach

Measuring in-network node similarity based on neighborhoods: a unified parametric approach In many applications, we need to measure similarity between nodes in a large network based on features of their neighborhoods. Although in-network node similarity based on proximity has been well investigated, surprisingly, measuring in-network node similarity based on neighborhoods remains a largely untouched problem in literature. One challenge is that in different applications we may need different measurements that manifest different meanings of similarity. Furthermore, we often want to make trade-offs between specificity of neighborhood matching and efficiency. In this paper, we investigate the problem in a principled and systematic manner. We develop a unified parametric model and a series of four instance measures. Those instance similarity measures not only address a spectrum of various meanings of similarity, but also present a series of trade-offs between computational cost and strictness of matching between neighborhoods of nodes being compared. By extensive experiments and case studies, we demonstrate the effectiveness of the proposed model and its instances. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Knowledge and Information Systems Springer Journals

Measuring in-network node similarity based on neighborhoods: a unified parametric approach

Loading next page...
 
/lp/springer_journal/measuring-in-network-node-similarity-based-on-neighborhoods-a-unified-jojNvdmeNm
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Computer Science; Information Systems and Communication Service; IT in Business
ISSN
0219-1377
eISSN
0219-3116
D.O.I.
10.1007/s10115-017-1033-5
Publisher site
See Article on Publisher Site

Abstract

In many applications, we need to measure similarity between nodes in a large network based on features of their neighborhoods. Although in-network node similarity based on proximity has been well investigated, surprisingly, measuring in-network node similarity based on neighborhoods remains a largely untouched problem in literature. One challenge is that in different applications we may need different measurements that manifest different meanings of similarity. Furthermore, we often want to make trade-offs between specificity of neighborhood matching and efficiency. In this paper, we investigate the problem in a principled and systematic manner. We develop a unified parametric model and a series of four instance measures. Those instance similarity measures not only address a spectrum of various meanings of similarity, but also present a series of trade-offs between computational cost and strictness of matching between neighborhoods of nodes being compared. By extensive experiments and case studies, we demonstrate the effectiveness of the proposed model and its instances.

Journal

Knowledge and Information SystemsSpringer Journals

Published: Feb 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off