Measuring crop status using multivariate analysis of hyperspectral field reflectance with application to disease severity and plant density

Measuring crop status using multivariate analysis of hyperspectral field reflectance with... Using spectral reflectance to estimate crop status is a method suitable for developing sensors for site-specific agricultural applications. When developing spectral analysis methods, it is important to know the influence of different crop parameters on the spectral reflectance profile. The objective of this report was to present and evaluate a multivariate method for objective hyperspectral analysis in the examination of how different parts of the reflectance spectrum are affected by disease severity and above ground plant density. Data from two field experiments were used; fungal disease severity assessments in wheat 1998 and above ground plant density measurements 2003. The analysis method consisted of two steps: a pre-processing step where the data was normalized and a classification step for estimating the crop variable. Using only 12% of the data as training data, the method resulted in coefficients of determination (R 2) of 94.3% for the disease severity data and 96.9% for the plant density data. The hyperspectral analysis method presented could also be used to extract spectral signatures of disease severity and plant density using the experimental data. In general, two types of spectral signatures for both data sets, with respect to increasing disease severity and decreasing plant density, were observed (1) a flattening of the green reflectance peak together with a general decrease in reflectance in the near infrared region and, (2) a decrease of the shoulder of the near infrared reflectance plateau together with a general increase in the visible region between 550 and 750 nm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Measuring crop status using multivariate analysis of hyperspectral field reflectance with application to disease severity and plant density

Loading next page...
 
/lp/springer_journal/measuring-crop-status-using-multivariate-analysis-of-hyperspectral-DGYNQoSFQz
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-006-9027-4
Publisher site
See Article on Publisher Site

Abstract

Using spectral reflectance to estimate crop status is a method suitable for developing sensors for site-specific agricultural applications. When developing spectral analysis methods, it is important to know the influence of different crop parameters on the spectral reflectance profile. The objective of this report was to present and evaluate a multivariate method for objective hyperspectral analysis in the examination of how different parts of the reflectance spectrum are affected by disease severity and above ground plant density. Data from two field experiments were used; fungal disease severity assessments in wheat 1998 and above ground plant density measurements 2003. The analysis method consisted of two steps: a pre-processing step where the data was normalized and a classification step for estimating the crop variable. Using only 12% of the data as training data, the method resulted in coefficients of determination (R 2) of 94.3% for the disease severity data and 96.9% for the plant density data. The hyperspectral analysis method presented could also be used to extract spectral signatures of disease severity and plant density using the experimental data. In general, two types of spectral signatures for both data sets, with respect to increasing disease severity and decreasing plant density, were observed (1) a flattening of the green reflectance peak together with a general decrease in reflectance in the near infrared region and, (2) a decrease of the shoulder of the near infrared reflectance plateau together with a general increase in the visible region between 550 and 750 nm.

Journal

Precision AgricultureSpringer Journals

Published: Feb 7, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off