Measurements of mean and fluctuating temperature in an underexpanded jet using electrostrictive laser-induced gratings

Measurements of mean and fluctuating temperature in an underexpanded jet using electrostrictive... Instantaneous temperature measurements were obtained in an underexpanded jet using electrostrictive laser-induced gratings. Evaluation of the technique under static, low-pressure conditions provided a baseline uncertainty or precision for single-shot temperature measurements of 4.4% of the local mean temperature, which represents the minimum detectable temperature fluctuation. The underexpanded jet was operated at a nozzle pressure ratio of 2.39 and a fully expanded jet Mach number of 1.19. Data were acquired along the centerline and over two radial traverses through the shear layer. Mean temperature data agree well with expectations, describing the shock-cell structure and the compressible shear layer. The growth in shear-layer width with downstream distance can be identified in the mean and fluctuating temperature measurements. Temperature fluctuations are near the baseline detection limit in the jet core and surrounding ambient air, and reach a maximum in the shear layer. The temperature fluctuation measurements compare well with previous computational and experimental work, confirming the application of the technique to a turbulent, supersonic flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Measurements of mean and fluctuating temperature in an underexpanded jet using electrostrictive laser-induced gratings

Loading next page...
 
/lp/springer_journal/measurements-of-mean-and-fluctuating-temperature-in-an-underexpanded-En7ROTp0dP
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0746-y
Publisher site
See Article on Publisher Site

Abstract

Instantaneous temperature measurements were obtained in an underexpanded jet using electrostrictive laser-induced gratings. Evaluation of the technique under static, low-pressure conditions provided a baseline uncertainty or precision for single-shot temperature measurements of 4.4% of the local mean temperature, which represents the minimum detectable temperature fluctuation. The underexpanded jet was operated at a nozzle pressure ratio of 2.39 and a fully expanded jet Mach number of 1.19. Data were acquired along the centerline and over two radial traverses through the shear layer. Mean temperature data agree well with expectations, describing the shock-cell structure and the compressible shear layer. The growth in shear-layer width with downstream distance can be identified in the mean and fluctuating temperature measurements. Temperature fluctuations are near the baseline detection limit in the jet core and surrounding ambient air, and reach a maximum in the shear layer. The temperature fluctuation measurements compare well with previous computational and experimental work, confirming the application of the technique to a turbulent, supersonic flow.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 27, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off