Measurements of an unsteady liquid metal flow during spin-up driven by a rotating magnetic field

Measurements of an unsteady liquid metal flow during spin-up driven by a rotating magnetic field A cylindrical cavity with an aspect ratio of unity is filled with liquid metal and suddenly exposed to an azimuthal body force generated by a rotating magnetic field (RMF). This experimental study is concerned with the secondary meridional flow during the time, if the fluid spins up from rest. Vertical profiles of the axial velocity have been measured by means of the ultrasound Doppler velocimetry. The flow measurements confirm the spin-up concept by Ungarish (J Fluid Mech 347:105–118, 1997) and the continuative study by Nikrityuk et al. (Phys Fluids 17:067101, 2005) who suggested the existence of two stages during the RMF-driven spin-up, in particular the so-called initial adjustment phase followed by an inertial phase which is dominated by inertial oscillations of the secondary flow. Evolving instabilities of the double-vortex structure of the secondary flow have been detected at a Taylor number of 1.24 × 105 verifying the predictions of Grants and Gerbeth (J Fluid Mech 463:229–240, 2002). Perturbations in form of Taylor–Görtler vortices have been observed just above the instability threshold. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Measurements of an unsteady liquid metal flow during spin-up driven by a rotating magnetic field

Loading next page...
 
/lp/springer_journal/measurements-of-an-unsteady-liquid-metal-flow-during-spin-up-driven-by-Kg3vuou4e9
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0735-1
Publisher site
See Article on Publisher Site

Abstract

A cylindrical cavity with an aspect ratio of unity is filled with liquid metal and suddenly exposed to an azimuthal body force generated by a rotating magnetic field (RMF). This experimental study is concerned with the secondary meridional flow during the time, if the fluid spins up from rest. Vertical profiles of the axial velocity have been measured by means of the ultrasound Doppler velocimetry. The flow measurements confirm the spin-up concept by Ungarish (J Fluid Mech 347:105–118, 1997) and the continuative study by Nikrityuk et al. (Phys Fluids 17:067101, 2005) who suggested the existence of two stages during the RMF-driven spin-up, in particular the so-called initial adjustment phase followed by an inertial phase which is dominated by inertial oscillations of the secondary flow. Evolving instabilities of the double-vortex structure of the secondary flow have been detected at a Taylor number of 1.24 × 105 verifying the predictions of Grants and Gerbeth (J Fluid Mech 463:229–240, 2002). Perturbations in form of Taylor–Görtler vortices have been observed just above the instability threshold.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 28, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off