Measurement of velocity profiles in a rectangular microchannel with aspect ratio α=0.35

Measurement of velocity profiles in a rectangular microchannel with aspect ratio α=0.35 In this work, we measured 14 horizontal velocity profiles along the vertical direction of a rectangular microchannel with aspect ratio α = h/w = 0.35 (h is the height of the channel and w is the width of the channel) using microPIV at Re = 1.8 and 3.6. The experimental velocity profiles are compared with the full 3D theoretical solution, and also with a Poiseuille parabolic profile. It is shown that the experimental velocity profiles in the horizontal and vertical planes are in agreement with the theoretical profiles, except for the planes close to the wall. The discrepancies between the experimental data and 3D theoretical results in the center vertical plane are less than 3.6%. But the deviations between experimental data and Poiseuille’s results approaches 5%. It indicates that 2D Poiseuille profile is no longer a perfect theoretical approximation since α = 0.35. The experiments also reveal that, very near the hydrophilic wall (z = 0.5–1 μm), the measured velocities are significantly larger than the theoretical velocity based on the no-slip assumption. A proper discussion on some physical effects influencing the near wall velocity measurement is given. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Measurement of velocity profiles in a rectangular microchannel with aspect ratio α=0.35

Loading next page...
 
/lp/springer_journal/measurement-of-velocity-profiles-in-a-rectangular-microchannel-with-OV8N25g0cc
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0454-4
Publisher site
See Article on Publisher Site

Abstract

In this work, we measured 14 horizontal velocity profiles along the vertical direction of a rectangular microchannel with aspect ratio α = h/w = 0.35 (h is the height of the channel and w is the width of the channel) using microPIV at Re = 1.8 and 3.6. The experimental velocity profiles are compared with the full 3D theoretical solution, and also with a Poiseuille parabolic profile. It is shown that the experimental velocity profiles in the horizontal and vertical planes are in agreement with the theoretical profiles, except for the planes close to the wall. The discrepancies between the experimental data and 3D theoretical results in the center vertical plane are less than 3.6%. But the deviations between experimental data and Poiseuille’s results approaches 5%. It indicates that 2D Poiseuille profile is no longer a perfect theoretical approximation since α = 0.35. The experiments also reveal that, very near the hydrophilic wall (z = 0.5–1 μm), the measured velocities are significantly larger than the theoretical velocity based on the no-slip assumption. A proper discussion on some physical effects influencing the near wall velocity measurement is given.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 24, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off