Measurement of the Motion of Fertilizer Particles Leaving a Centrifugal Spreader Using a Fast Imaging System

Measurement of the Motion of Fertilizer Particles Leaving a Centrifugal Spreader Using a Fast... Although mechanically simple, centrifugal spreaders used for mineral fertilization involve complex physics that cannot be fully characterized at the present time. We are developing sensors to evaluate the spatial distribution of the fertilizer on the ground based on the measurement of initial flight conditions of fertilizer granules after their ejection by the spreading disk. The techniques developed are based on the analysis of images of the area around the disk showing the granule ejection. A high resolution – low cost imaging system for the analysis of high speed particle projection developed for this specific purpose is presented in this paper. The system, based on a camera and a sequence of flashes, is used to characterize the centrifugal spreading of fertilizer particles ejected at speeds of approximately 30m s−1. It automatically computes the direction of ejection and velocity of each granule observed in the image. Multi-exposure images collected with the camera installed perpendicular to the output flow of granules are analyzed to estimate the trajectories of the fertilizer granules, using different motion estimation methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Measurement of the Motion of Fertilizer Particles Leaving a Centrifugal Spreader Using a Fast Imaging System

Loading next page...
 
/lp/springer_journal/measurement-of-the-motion-of-fertilizer-particles-leaving-a-0C7akhNAjc
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1023/A:1024904523582
Publisher site
See Article on Publisher Site

Abstract

Although mechanically simple, centrifugal spreaders used for mineral fertilization involve complex physics that cannot be fully characterized at the present time. We are developing sensors to evaluate the spatial distribution of the fertilizer on the ground based on the measurement of initial flight conditions of fertilizer granules after their ejection by the spreading disk. The techniques developed are based on the analysis of images of the area around the disk showing the granule ejection. A high resolution – low cost imaging system for the analysis of high speed particle projection developed for this specific purpose is presented in this paper. The system, based on a camera and a sequence of flashes, is used to characterize the centrifugal spreading of fertilizer particles ejected at speeds of approximately 30m s−1. It automatically computes the direction of ejection and velocity of each granule observed in the image. Multi-exposure images collected with the camera installed perpendicular to the output flow of granules are analyzed to estimate the trajectories of the fertilizer granules, using different motion estimation methods.

Journal

Precision AgricultureSpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off