Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing

Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point... An improved extended glare point velocimetry and sizing (EGPVS) is proposed to investigate the droplets sizes of a flash boiling spray. When a spherical droplet with a relative refractive index from 1.16 to 1.41 is illuminated by two opposite laser sheets and a charge-coupled device camera is used to collect the s-polarization light at an observation angle of 90°, the intensities of the reflected lights are much stronger than the other order scattering lights. If the intensity of incident laser is controlled appropriately, two glare points from the reflected lights for the droplet are formed at the focused plane, while the intensities of the other order scattering lights are too weak to form any glare points. Then, the droplet diameter can be derived from the distance between the two glare points. In addition, the focused image is relative small, making it possible to measure dense spray. First, the characteristics of the improved EGPVS are discussed, and a series of standard particles are measured for validating this technique. Then, the technique is applied to investigate the droplets sizes of flash boiling spray. It is found that the minimum measurable diameter of droplets is 7.1 μm, and the relative error is less than 4.7 %. The droplet size distributions of spray are different at different stages. The Sauter mean diameter (SMD) of gasoline spray decreases gradually as the fuel temperature increases, which is different from that of a single-component fuel with a sharp decrease in SMD at the flash boiling stage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing

Loading next page...
 
/lp/springer_journal/measurement-of-the-droplets-sizes-of-a-flash-boiling-spray-using-an-eoo6hSs1mA
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2147-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial