Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing

Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point... An improved extended glare point velocimetry and sizing (EGPVS) is proposed to investigate the droplets sizes of a flash boiling spray. When a spherical droplet with a relative refractive index from 1.16 to 1.41 is illuminated by two opposite laser sheets and a charge-coupled device camera is used to collect the s-polarization light at an observation angle of 90°, the intensities of the reflected lights are much stronger than the other order scattering lights. If the intensity of incident laser is controlled appropriately, two glare points from the reflected lights for the droplet are formed at the focused plane, while the intensities of the other order scattering lights are too weak to form any glare points. Then, the droplet diameter can be derived from the distance between the two glare points. In addition, the focused image is relative small, making it possible to measure dense spray. First, the characteristics of the improved EGPVS are discussed, and a series of standard particles are measured for validating this technique. Then, the technique is applied to investigate the droplets sizes of flash boiling spray. It is found that the minimum measurable diameter of droplets is 7.1 μm, and the relative error is less than 4.7 %. The droplet size distributions of spray are different at different stages. The Sauter mean diameter (SMD) of gasoline spray decreases gradually as the fuel temperature increases, which is different from that of a single-component fuel with a sharp decrease in SMD at the flash boiling stage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing

Loading next page...
 
/lp/springer_journal/measurement-of-the-droplets-sizes-of-a-flash-boiling-spray-using-an-eoo6hSs1mA
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2147-3
Publisher site
See Article on Publisher Site

Abstract

An improved extended glare point velocimetry and sizing (EGPVS) is proposed to investigate the droplets sizes of a flash boiling spray. When a spherical droplet with a relative refractive index from 1.16 to 1.41 is illuminated by two opposite laser sheets and a charge-coupled device camera is used to collect the s-polarization light at an observation angle of 90°, the intensities of the reflected lights are much stronger than the other order scattering lights. If the intensity of incident laser is controlled appropriately, two glare points from the reflected lights for the droplet are formed at the focused plane, while the intensities of the other order scattering lights are too weak to form any glare points. Then, the droplet diameter can be derived from the distance between the two glare points. In addition, the focused image is relative small, making it possible to measure dense spray. First, the characteristics of the improved EGPVS are discussed, and a series of standard particles are measured for validating this technique. Then, the technique is applied to investigate the droplets sizes of flash boiling spray. It is found that the minimum measurable diameter of droplets is 7.1 μm, and the relative error is less than 4.7 %. The droplet size distributions of spray are different at different stages. The Sauter mean diameter (SMD) of gasoline spray decreases gradually as the fuel temperature increases, which is different from that of a single-component fuel with a sharp decrease in SMD at the flash boiling stage.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off